mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
VOC Features Code complete?
This commit is contained in:
parent
228d3663f8
commit
43424a343a
99
src/tests.c
99
src/tests.c
@ -366,7 +366,7 @@ void test_im2row()
|
||||
|
||||
void train_VOC()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg");
|
||||
network net = parse_network_cfg("cfg/voc_start.cfg");
|
||||
srand(2222222);
|
||||
int i = 20;
|
||||
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
|
||||
@ -374,7 +374,7 @@ void train_VOC()
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
while(i++ < 1000 || 1){
|
||||
data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400);
|
||||
data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
|
||||
|
||||
image im = float_to_image(300, 400, 3,train.X.vals[0]);
|
||||
show_image(im, "input");
|
||||
@ -389,25 +389,56 @@ void train_VOC()
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i);
|
||||
sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
//lr *= .99;
|
||||
}
|
||||
}
|
||||
|
||||
void features_VOC()
|
||||
int voc_size(int x)
|
||||
{
|
||||
int i,j;
|
||||
x = x-1+3;
|
||||
x = x-1+3;
|
||||
x = (x-1)*2+1;
|
||||
x = x-1+5;
|
||||
x = (x-1)*2+1;
|
||||
x = (x-1)*4+11;
|
||||
return x;
|
||||
}
|
||||
|
||||
image features_output_size(network net, IplImage *src, int outh, int outw)
|
||||
{
|
||||
int h = voc_size(outh);
|
||||
int w = voc_size(outw);
|
||||
|
||||
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
|
||||
cvResize(src, sized, CV_INTER_LINEAR);
|
||||
image im = ipl_to_image(sized);
|
||||
reset_network_size(net, im.h, im.w, im.c);
|
||||
forward_network(net, im.data);
|
||||
image out = get_network_image_layer(net, 5);
|
||||
//printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
|
||||
free_image(im);
|
||||
cvReleaseImage(&sized);
|
||||
return copy_image(out);
|
||||
}
|
||||
|
||||
void features_VOC(int part, int total)
|
||||
{
|
||||
int i,j, count = 0;
|
||||
network net = parse_network_cfg("cfg/voc_features.cfg");
|
||||
char *path_file = "images/VOC2012/all_paths.txt";
|
||||
char *out_dir = "voc_features/";
|
||||
list *paths = get_paths(path_file);
|
||||
node *n = paths->front;
|
||||
while(n){
|
||||
int size = paths->size;
|
||||
for(count = 0; count < part*size/total; ++count) n = n->next;
|
||||
while(n && count++ < (part+1)*size/total){
|
||||
char *path = (char *)n->val;
|
||||
char buff[1024];
|
||||
sprintf(buff, "%s%s.txt",out_dir, path);
|
||||
printf("%s\n", path);
|
||||
FILE *fp = fopen(buff, "w");
|
||||
if(fp == 0) file_error(buff);
|
||||
|
||||
@ -417,35 +448,59 @@ void features_VOC()
|
||||
printf("Cannot load file image %s\n", path);
|
||||
exit(0);
|
||||
}
|
||||
int w = src->width;
|
||||
int h = src->height;
|
||||
int sbin = 8;
|
||||
int interval = 10;
|
||||
double scale = pow(2., 1./interval);
|
||||
int m = (w<h)?w:h;
|
||||
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
|
||||
image *ims = calloc(max_scale+interval, sizeof(image));
|
||||
|
||||
for(i = 0; i < 10; ++i){
|
||||
int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!!
|
||||
int h = (int)((double)w/src->width * src->height);
|
||||
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
|
||||
cvResize(src, sized, CV_INTER_LINEAR);
|
||||
image im = ipl_to_image(sized);
|
||||
reset_network_size(net, im.h, im.w, im.c);
|
||||
forward_network(net, im.data);
|
||||
free_image(im);
|
||||
image out = get_network_image_layer(net, 5);
|
||||
for(i = 0; i < interval; ++i){
|
||||
double factor = 1./pow(scale, i);
|
||||
double ih = round(h*factor);
|
||||
double iw = round(w*factor);
|
||||
int ex_h = round(ih/4.) - 2;
|
||||
int ex_w = round(iw/4.) - 2;
|
||||
ims[i] = features_output_size(net, src, ex_h, ex_w);
|
||||
|
||||
ih = round(h*factor);
|
||||
iw = round(w*factor);
|
||||
ex_h = round(ih/8.) - 2;
|
||||
ex_w = round(iw/8.) - 2;
|
||||
ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
|
||||
for(j = i+interval; j < max_scale; j += interval){
|
||||
factor /= 2.;
|
||||
ih = round(h*factor);
|
||||
iw = round(w*factor);
|
||||
ex_h = round(ih/8.) - 2;
|
||||
ex_w = round(iw/8.) - 2;
|
||||
ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
|
||||
}
|
||||
}
|
||||
for(i = 0; i < max_scale+interval; ++i){
|
||||
image out = ims[i];
|
||||
//printf("%d, %d\n", out.h, out.w);
|
||||
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
|
||||
for(j = 0; j < out.c*out.h*out.w; ++j){
|
||||
if(j != 0)fprintf(fp, ",");
|
||||
fprintf(fp, "%g", out.data[j]);
|
||||
}
|
||||
fprintf(fp, "\n");
|
||||
out.c = 1;
|
||||
show_image(out, "output");
|
||||
cvWaitKey(10);
|
||||
cvReleaseImage(&sized);
|
||||
free_image(out);
|
||||
}
|
||||
free(ims);
|
||||
fclose(fp);
|
||||
cvReleaseImage(&src);
|
||||
n = n->next;
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int part = atoi(argv[1]);
|
||||
int total = atoi(argv[2]);
|
||||
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
|
||||
|
||||
//test_blas();
|
||||
@ -456,7 +511,7 @@ int main()
|
||||
//test_nist();
|
||||
//test_full();
|
||||
//train_VOC();
|
||||
features_VOC();
|
||||
features_VOC(part, total);
|
||||
//test_random_preprocess();
|
||||
//test_random_classify();
|
||||
//test_parser();
|
||||
|
Loading…
Reference in New Issue
Block a user