mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
So I have this new programming paradigm.......
This commit is contained in:
121
src/detector.c
121
src/detector.c
@ -1,16 +1,16 @@
|
||||
#include "network.h"
|
||||
#include "detection_layer.h"
|
||||
#include "region_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "box.h"
|
||||
#include "demo.h"
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
|
||||
static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
||||
static image voc_labels[20];
|
||||
|
||||
void train_detector(char *cfgfile, char *weightfile)
|
||||
{
|
||||
@ -49,13 +49,14 @@ void train_detector(char *cfgfile, char *weightfile)
|
||||
args.num_boxes = l.max_boxes;
|
||||
args.d = &buffer;
|
||||
args.type = DETECTION_DATA;
|
||||
args.threads = 4;
|
||||
|
||||
args.angle = net.angle;
|
||||
args.exposure = net.exposure;
|
||||
args.saturation = net.saturation;
|
||||
args.hue = net.hue;
|
||||
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
pthread_t load_thread = load_data(args);
|
||||
clock_t time;
|
||||
//while(i*imgs < N*120){
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
@ -63,7 +64,7 @@ void train_detector(char *cfgfile, char *weightfile)
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data_in_thread(args);
|
||||
load_thread = load_data(args);
|
||||
|
||||
/*
|
||||
int k;
|
||||
@ -102,44 +103,6 @@ void train_detector(char *cfgfile, char *weightfile)
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
||||
{
|
||||
int i,j,n;
|
||||
//int per_cell = 5*num+classes;
|
||||
for (i = 0; i < side*side; ++i){
|
||||
int row = i / side;
|
||||
int col = i % side;
|
||||
for(n = 0; n < num; ++n){
|
||||
int index = i*num + n;
|
||||
int p_index = index * (classes + 5) + 4;
|
||||
float scale = predictions[p_index];
|
||||
int box_index = index * (classes + 5);
|
||||
boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
|
||||
boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
|
||||
if(0){
|
||||
boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / side * w;
|
||||
boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / side * h;
|
||||
}
|
||||
boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
|
||||
boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
|
||||
if(1){
|
||||
boxes[index].x = ((col + .5)/side + predictions[box_index + 0] * .5) * w;
|
||||
boxes[index].y = ((row + .5)/side + predictions[box_index + 1] * .5) * h;
|
||||
boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w;
|
||||
boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h;
|
||||
}
|
||||
for(j = 0; j < classes; ++j){
|
||||
int class_index = index * (classes + 5) + 5;
|
||||
float prob = scale*predictions[class_index+j];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
if(only_objectness){
|
||||
probs[index][0] = scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
@ -179,7 +142,6 @@ void validate_detector(char *cfgfile, char *weightfile)
|
||||
|
||||
layer l = net.layers[net.n-1];
|
||||
int classes = l.classes;
|
||||
int side = l.w;
|
||||
|
||||
int j;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
@ -188,9 +150,9 @@ void validate_detector(char *cfgfile, char *weightfile)
|
||||
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
box *boxes = calloc(side*side*l.n, sizeof(box));
|
||||
float **probs = calloc(side*side*l.n, sizeof(float *));
|
||||
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
|
||||
int m = plist->size;
|
||||
int i=0;
|
||||
@ -235,12 +197,12 @@ void validate_detector(char *cfgfile, char *weightfile)
|
||||
char *path = paths[i+t-nthreads];
|
||||
char *id = basecfg(path);
|
||||
float *X = val_resized[t].data;
|
||||
float *predictions = network_predict(net, X);
|
||||
network_predict(net, X);
|
||||
int w = val[t].w;
|
||||
int h = val[t].h;
|
||||
convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms);
|
||||
print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
|
||||
get_region_boxes(l, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
|
||||
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
free(id);
|
||||
free_image(val[t]);
|
||||
free_image(val_resized[t]);
|
||||
@ -268,8 +230,6 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
|
||||
layer l = net.layers[net.n-1];
|
||||
int classes = l.classes;
|
||||
int square = l.sqrt;
|
||||
int side = l.side;
|
||||
|
||||
int j, k;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
@ -278,9 +238,9 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
box *boxes = calloc(side*side*l.n, sizeof(box));
|
||||
float **probs = calloc(side*side*l.n, sizeof(float *));
|
||||
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
|
||||
int m = plist->size;
|
||||
int i=0;
|
||||
@ -299,18 +259,19 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
image orig = load_image_color(path, 0, 0);
|
||||
image sized = resize_image(orig, net.w, net.h);
|
||||
char *id = basecfg(path);
|
||||
float *predictions = network_predict(net, sized.data);
|
||||
convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1);
|
||||
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
|
||||
network_predict(net, sized.data);
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1);
|
||||
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
|
||||
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||
char labelpath[4096];
|
||||
find_replace(path, "images", "labels", labelpath);
|
||||
find_replace(labelpath, "JPEGImages", "labels", labelpath);
|
||||
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
||||
find_replace(labelpath, ".JPEG", ".txt", labelpath);
|
||||
|
||||
int num_labels = 0;
|
||||
box_label *truth = read_boxes(labelpath, &num_labels);
|
||||
for(k = 0; k < side*side*l.n; ++k){
|
||||
for(k = 0; k < l.w*l.h*l.n; ++k){
|
||||
if(probs[k][0] > thresh){
|
||||
++proposals;
|
||||
}
|
||||
@ -319,7 +280,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
++total;
|
||||
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
||||
float best_iou = 0;
|
||||
for(k = 0; k < side*side*l.n; ++k){
|
||||
for(k = 0; k < l.w*l.h*l.n; ++k){
|
||||
float iou = box_iou(boxes[k], t);
|
||||
if(probs[k][0] > thresh && iou > best_iou){
|
||||
best_iou = iou;
|
||||
@ -340,13 +301,12 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
|
||||
void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
{
|
||||
|
||||
image *alphabet = load_alphabet();
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer l = net.layers[net.n-1];
|
||||
l.side = l.w;
|
||||
layer l = net.layers[net.n-1];
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
@ -354,9 +314,9 @@ void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh
|
||||
char *input = buff;
|
||||
int j;
|
||||
float nms=.4;
|
||||
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
|
||||
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
||||
while(1){
|
||||
if(filename){
|
||||
strncpy(input, filename, 256);
|
||||
@ -371,12 +331,12 @@ void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
float *X = sized.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
//draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
|
||||
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
|
||||
save_image(im, "predictions");
|
||||
show_image(im, "predictions");
|
||||
|
||||
@ -392,14 +352,10 @@ void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh
|
||||
|
||||
void run_detector(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < 20; ++i){
|
||||
char buff[256];
|
||||
sprintf(buff, "data/labels/%s.png", voc_names[i]);
|
||||
voc_labels[i] = load_image_color(buff, 0, 0);
|
||||
}
|
||||
|
||||
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
|
||||
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
||||
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
||||
int frame_skip = find_int_arg(argc, argv, "-s", 0);
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
@ -412,4 +368,5 @@ void run_detector(int argc, char **argv)
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, voc_names, 20, frame_skip, prefix);
|
||||
}
|
||||
|
Reference in New Issue
Block a user