mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
some fixes, some other experiments
This commit is contained in:
@ -24,15 +24,21 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
|
||||
layer->weight_prev = calloc(inputs*outputs, sizeof(float));
|
||||
layer->bias_prev = calloc(outputs, sizeof(float));
|
||||
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
|
||||
|
||||
float scale = 1./sqrt(inputs);
|
||||
//scale = .01;
|
||||
for(i = 0; i < inputs*outputs; ++i){
|
||||
layer->weights[i] = scale*rand_normal();
|
||||
}
|
||||
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i){
|
||||
layer->biases[i] = scale;
|
||||
}
|
||||
@ -52,6 +58,32 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
return layer;
|
||||
}
|
||||
|
||||
void secret_update_connected_layer(connected_layer *layer)
|
||||
{
|
||||
int n = layer->outputs*layer->inputs;
|
||||
float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
|
||||
float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
|
||||
* sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
|
||||
float cos = dot/mag;
|
||||
if(cos > .3) layer->learning_rate *= 1.1;
|
||||
else if (cos < -.3) layer-> learning_rate /= 1.1;
|
||||
|
||||
scal_cpu(n, layer->momentum, layer->weight_prev, 1);
|
||||
axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
|
||||
scal_cpu(n, 0, layer->weight_updates, 1);
|
||||
|
||||
scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
|
||||
axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
|
||||
scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
|
||||
|
||||
//printf("rate: %f\n", layer->learning_rate);
|
||||
|
||||
axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
|
||||
|
||||
axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
|
||||
axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
|
||||
}
|
||||
|
||||
void update_connected_layer(connected_layer layer)
|
||||
{
|
||||
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||
|
Reference in New Issue
Block a user