mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
some fixes, some other experiments
This commit is contained in:
parent
f88baf4a3a
commit
4ab366a805
2
Makefile
2
Makefile
@ -27,7 +27,7 @@ LDFLAGS+= -lOpenCL
|
|||||||
endif
|
endif
|
||||||
endif
|
endif
|
||||||
CFLAGS= $(COMMON) $(OPTS)
|
CFLAGS= $(COMMON) $(OPTS)
|
||||||
CFLAGS= $(COMMON) -O0 -g
|
#CFLAGS= $(COMMON) -O0 -g
|
||||||
LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
|
LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
|
||||||
VPATH=./src/
|
VPATH=./src/
|
||||||
EXEC=cnn
|
EXEC=cnn
|
||||||
|
@ -13,7 +13,7 @@ __kernel void scal(int N, float ALPHA, __global float *X, int INCX)
|
|||||||
__kernel void mask(int n, __global float *x, __global float *mask, int mod)
|
__kernel void mask(int n, __global float *x, __global float *mask, int mod)
|
||||||
{
|
{
|
||||||
int i = get_global_id(0);
|
int i = get_global_id(0);
|
||||||
x[i] = (mask[(i/mod)*mod] || i%mod == 0) ? x[i] : 0;
|
x[i] = (i%mod && !mask[(i/mod)*mod]) ? 0 : x[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
__kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
|
__kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
|
||||||
|
38
src/cnn.c
38
src/cnn.c
@ -31,21 +31,23 @@ void test_parser()
|
|||||||
save_network(net, "cfg/trained_imagenet_smaller.cfg");
|
save_network(net, "cfg/trained_imagenet_smaller.cfg");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#define AMNT 3
|
||||||
void draw_detection(image im, float *box, int side)
|
void draw_detection(image im, float *box, int side)
|
||||||
{
|
{
|
||||||
int j;
|
int j;
|
||||||
int r, c;
|
int r, c;
|
||||||
float amount[5] = {0,0,0,0,0};
|
float amount[AMNT] = {0};
|
||||||
for(r = 0; r < side*side; ++r){
|
for(r = 0; r < side*side; ++r){
|
||||||
for(j = 0; j < 5; ++j){
|
float val = box[r*5];
|
||||||
if(box[r*5] > amount[j]) {
|
for(j = 0; j < AMNT; ++j){
|
||||||
amount[j] = box[r*5];
|
if(val > amount[j]) {
|
||||||
break;
|
float swap = val;
|
||||||
|
val = amount[j];
|
||||||
|
amount[j] = swap;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
float smallest = amount[0];
|
float smallest = amount[AMNT-1];
|
||||||
for(j = 1; j < 5; ++j) if(amount[j] < smallest) smallest = amount[j];
|
|
||||||
|
|
||||||
for(r = 0; r < side; ++r){
|
for(r = 0; r < side; ++r){
|
||||||
for(c = 0; c < side; ++c){
|
for(c = 0; c < side; ++c){
|
||||||
@ -57,9 +59,9 @@ void draw_detection(image im, float *box, int side)
|
|||||||
int x = c*d+box[j+2]*d;
|
int x = c*d+box[j+2]*d;
|
||||||
int h = box[j+3]*256;
|
int h = box[j+3]*256;
|
||||||
int w = box[j+4]*256;
|
int w = box[j+4]*256;
|
||||||
printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
|
//printf("%f %f %f %f\n", box[j+1], box[j+2], box[j+3], box[j+4]);
|
||||||
printf("%d %d %d %d\n", x, y, w, h);
|
//printf("%d %d %d %d\n", x, y, w, h);
|
||||||
printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
|
//printf("%d %d %d %d\n", x-w/2, y-h/2, x+w/2, y+h/2);
|
||||||
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
|
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -87,9 +89,11 @@ void train_detection_net()
|
|||||||
i += 1;
|
i += 1;
|
||||||
time=clock();
|
time=clock();
|
||||||
data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256);
|
data train = load_data_detection_jitter_random(imgs, paths, plist->size, 256, 256, 7, 7, 256);
|
||||||
/*
|
//data train = load_data_detection_random(imgs, paths, plist->size, 224, 224, 7, 7, 256);
|
||||||
image im = float_to_image(224, 224, 3, train.X.vals[0]);
|
|
||||||
draw_detection(im, train.y.vals[0], 7);
|
/*
|
||||||
|
image im = float_to_image(224, 224, 3, train.X.vals[923]);
|
||||||
|
draw_detection(im, train.y.vals[923], 7);
|
||||||
*/
|
*/
|
||||||
|
|
||||||
normalize_data_rows(train);
|
normalize_data_rows(train);
|
||||||
@ -151,10 +155,10 @@ void train_imagenet(char *cfgfile)
|
|||||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||||
srand(time(0));
|
srand(time(0));
|
||||||
network net = parse_network_cfg(cfgfile);
|
network net = parse_network_cfg(cfgfile);
|
||||||
set_learning_network(&net, net.learning_rate, .5, .0005);
|
set_learning_network(&net, net.learning_rate/10., .5, .0005);
|
||||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||||
int imgs = 1024;
|
int imgs = 1024;
|
||||||
int i = 23030;
|
int i = 44700;
|
||||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||||
char **paths = (char **)list_to_array(plist);
|
char **paths = (char **)list_to_array(plist);
|
||||||
@ -385,8 +389,8 @@ void train_nist(char *cfgfile)
|
|||||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
||||||
network net = parse_network_cfg(cfgfile);
|
network net = parse_network_cfg(cfgfile);
|
||||||
int count = 0;
|
int count = 0;
|
||||||
int iters = 60000/net.batch + 1;
|
int iters = 6000/net.batch + 1;
|
||||||
while(++count <= 10){
|
while(++count <= 100){
|
||||||
clock_t start = clock(), end;
|
clock_t start = clock(), end;
|
||||||
normalize_data_rows(train);
|
normalize_data_rows(train);
|
||||||
normalize_data_rows(test);
|
normalize_data_rows(test);
|
||||||
|
@ -24,15 +24,21 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
|||||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||||
|
|
||||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||||
|
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||||
|
|
||||||
|
layer->weight_prev = calloc(inputs*outputs, sizeof(float));
|
||||||
|
layer->bias_prev = calloc(outputs, sizeof(float));
|
||||||
|
|
||||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||||
|
layer->biases = calloc(outputs, sizeof(float));
|
||||||
|
|
||||||
|
|
||||||
float scale = 1./sqrt(inputs);
|
float scale = 1./sqrt(inputs);
|
||||||
//scale = .01;
|
//scale = .01;
|
||||||
for(i = 0; i < inputs*outputs; ++i){
|
for(i = 0; i < inputs*outputs; ++i){
|
||||||
layer->weights[i] = scale*rand_normal();
|
layer->weights[i] = scale*rand_normal();
|
||||||
}
|
}
|
||||||
|
|
||||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
|
||||||
layer->biases = calloc(outputs, sizeof(float));
|
|
||||||
for(i = 0; i < outputs; ++i){
|
for(i = 0; i < outputs; ++i){
|
||||||
layer->biases[i] = scale;
|
layer->biases[i] = scale;
|
||||||
}
|
}
|
||||||
@ -52,6 +58,32 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
|||||||
return layer;
|
return layer;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void secret_update_connected_layer(connected_layer *layer)
|
||||||
|
{
|
||||||
|
int n = layer->outputs*layer->inputs;
|
||||||
|
float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
|
||||||
|
float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
|
||||||
|
* sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
|
||||||
|
float cos = dot/mag;
|
||||||
|
if(cos > .3) layer->learning_rate *= 1.1;
|
||||||
|
else if (cos < -.3) layer-> learning_rate /= 1.1;
|
||||||
|
|
||||||
|
scal_cpu(n, layer->momentum, layer->weight_prev, 1);
|
||||||
|
axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
|
||||||
|
scal_cpu(n, 0, layer->weight_updates, 1);
|
||||||
|
|
||||||
|
scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
|
||||||
|
axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
|
||||||
|
scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
|
||||||
|
|
||||||
|
//printf("rate: %f\n", layer->learning_rate);
|
||||||
|
|
||||||
|
axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
|
||||||
|
|
||||||
|
axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
|
||||||
|
axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
|
||||||
|
}
|
||||||
|
|
||||||
void update_connected_layer(connected_layer layer)
|
void update_connected_layer(connected_layer layer)
|
||||||
{
|
{
|
||||||
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||||
|
@ -18,8 +18,8 @@ typedef struct{
|
|||||||
float *weight_updates;
|
float *weight_updates;
|
||||||
float *bias_updates;
|
float *bias_updates;
|
||||||
|
|
||||||
float *weight_adapt;
|
float *weight_prev;
|
||||||
float *bias_adapt;
|
float *bias_prev;
|
||||||
|
|
||||||
float *output;
|
float *output;
|
||||||
float *delta;
|
float *delta;
|
||||||
@ -38,6 +38,7 @@ typedef struct{
|
|||||||
|
|
||||||
} connected_layer;
|
} connected_layer;
|
||||||
|
|
||||||
|
void secret_update_connected_layer(connected_layer *layer);
|
||||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay);
|
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay);
|
||||||
|
|
||||||
void forward_connected_layer(connected_layer layer, float *input);
|
void forward_connected_layer(connected_layer layer, float *input);
|
||||||
|
42
src/data.c
42
src/data.c
@ -81,6 +81,18 @@ matrix load_image_paths(char **paths, int n, int h, int w)
|
|||||||
return X;
|
return X;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
char **get_random_paths(char **paths, int n, int m)
|
||||||
|
{
|
||||||
|
char **random_paths = calloc(n, sizeof(char*));
|
||||||
|
int i;
|
||||||
|
for(i = 0; i < n; ++i){
|
||||||
|
int index = rand()%m;
|
||||||
|
random_paths[i] = paths[index];
|
||||||
|
if(i == 0) printf("%s\n", paths[index]);
|
||||||
|
}
|
||||||
|
return random_paths;
|
||||||
|
}
|
||||||
|
|
||||||
matrix load_labels_paths(char **paths, int n, char **labels, int k)
|
matrix load_labels_paths(char **paths, int n, char **labels, int k)
|
||||||
{
|
{
|
||||||
matrix y = make_matrix(n, k);
|
matrix y = make_matrix(n, k);
|
||||||
@ -138,13 +150,8 @@ void free_data(data d)
|
|||||||
|
|
||||||
data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
|
data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
|
||||||
{
|
{
|
||||||
char **random_paths = calloc(n, sizeof(char*));
|
char **random_paths = get_random_paths(paths, n, m);
|
||||||
int i;
|
int i;
|
||||||
for(i = 0; i < n; ++i){
|
|
||||||
int index = rand()%m;
|
|
||||||
random_paths[i] = paths[index];
|
|
||||||
if(i == 0) printf("%s\n", paths[index]);
|
|
||||||
}
|
|
||||||
data d;
|
data d;
|
||||||
d.shallow = 0;
|
d.shallow = 0;
|
||||||
d.X = load_image_paths(random_paths, n, h, w);
|
d.X = load_image_paths(random_paths, n, h, w);
|
||||||
@ -154,10 +161,11 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w,
|
|||||||
int dx = rand()%32;
|
int dx = rand()%32;
|
||||||
int dy = rand()%32;
|
int dy = rand()%32;
|
||||||
fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy);
|
fill_truth_detection(random_paths[i], d.y.vals[i], 224, 224, nh, nw, scale, dx, dy);
|
||||||
|
|
||||||
image a = float_to_image(h, w, 3, d.X.vals[i]);
|
image a = float_to_image(h, w, 3, d.X.vals[i]);
|
||||||
jitter_image(a,224,224,dy,dx);
|
jitter_image(a,224,224,dy,dx);
|
||||||
}
|
}
|
||||||
|
d.X.cols = 224*224*3;
|
||||||
|
// print_matrix(d.y);
|
||||||
free(random_paths);
|
free(random_paths);
|
||||||
return d;
|
return d;
|
||||||
}
|
}
|
||||||
@ -165,13 +173,7 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w,
|
|||||||
|
|
||||||
data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
|
data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale)
|
||||||
{
|
{
|
||||||
char **random_paths = calloc(n, sizeof(char*));
|
char **random_paths = get_random_paths(paths, n, m);
|
||||||
int i;
|
|
||||||
for(i = 0; i < n; ++i){
|
|
||||||
int index = rand()%m;
|
|
||||||
random_paths[i] = paths[index];
|
|
||||||
if(i == 0) printf("%s\n", paths[index]);
|
|
||||||
}
|
|
||||||
data d;
|
data d;
|
||||||
d.shallow = 0;
|
d.shallow = 0;
|
||||||
d.X = load_image_paths(random_paths, n, h, w);
|
d.X = load_image_paths(random_paths, n, h, w);
|
||||||
@ -180,18 +182,6 @@ data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh
|
|||||||
return d;
|
return d;
|
||||||
}
|
}
|
||||||
|
|
||||||
char **get_random_paths(char **paths, int n, int m)
|
|
||||||
{
|
|
||||||
char **random_paths = calloc(n, sizeof(char*));
|
|
||||||
int i;
|
|
||||||
for(i = 0; i < n; ++i){
|
|
||||||
int index = rand()%m;
|
|
||||||
random_paths[i] = paths[index];
|
|
||||||
if(i == 0) printf("%s\n", paths[index]);
|
|
||||||
}
|
|
||||||
return random_paths;
|
|
||||||
}
|
|
||||||
|
|
||||||
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
|
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
|
||||||
{
|
{
|
||||||
if(m) paths = get_random_paths(paths, n, m);
|
if(m) paths = get_random_paths(paths, n, m);
|
||||||
|
@ -80,6 +80,7 @@ void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input)
|
|||||||
|
|
||||||
void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta)
|
void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta)
|
||||||
{
|
{
|
||||||
|
if(!delta) return;
|
||||||
int size = layer.inputs*layer.batch;
|
int size = layer.inputs*layer.batch;
|
||||||
|
|
||||||
cl_kernel kernel = get_dropout_kernel();
|
cl_kernel kernel = get_dropout_kernel();
|
||||||
|
@ -39,6 +39,7 @@ void jitter_image(image a, int h, int w, int dh, int dw)
|
|||||||
for(j = 0; j < w; ++j){
|
for(j = 0; j < w; ++j){
|
||||||
int src = j + dw + (i+dh)*a.w + k*a.w*a.h;
|
int src = j + dw + (i+dh)*a.w + k*a.w*a.h;
|
||||||
int dst = j + i*w + k*w*h;
|
int dst = j + i*w + k*w*h;
|
||||||
|
//printf("%d %d\n", src, dst);
|
||||||
a.data[dst] = a.data[src];
|
a.data[dst] = a.data[src];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -103,7 +103,8 @@ void update_network(network net)
|
|||||||
}
|
}
|
||||||
else if(net.types[i] == CONNECTED){
|
else if(net.types[i] == CONNECTED){
|
||||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||||
update_connected_layer(layer);
|
secret_update_connected_layer((connected_layer *)net.layers[i]);
|
||||||
|
//update_connected_layer(layer);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -195,6 +195,7 @@ float *get_network_output_layer_gpu(network net, int i)
|
|||||||
}
|
}
|
||||||
else if(net.types[i] == CONNECTED){
|
else if(net.types[i] == CONNECTED){
|
||||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||||
|
cl_read_array(layer.output_cl, layer.output, layer.outputs*layer.batch);
|
||||||
return layer.output;
|
return layer.output;
|
||||||
}
|
}
|
||||||
else if(net.types[i] == MAXPOOL){
|
else if(net.types[i] == MAXPOOL){
|
||||||
|
Loading…
x
Reference in New Issue
Block a user