mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
gonna change im2col
This commit is contained in:
@ -8,23 +8,24 @@
|
||||
|
||||
int get_detection_layer_locations(detection_layer layer)
|
||||
{
|
||||
return layer.inputs / (layer.classes+layer.coords+layer.rescore);
|
||||
return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
|
||||
}
|
||||
|
||||
int get_detection_layer_output_size(detection_layer layer)
|
||||
{
|
||||
return get_detection_layer_locations(layer)*(layer.classes+layer.coords);
|
||||
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
|
||||
}
|
||||
|
||||
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore)
|
||||
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background)
|
||||
{
|
||||
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
||||
|
||||
|
||||
layer->batch = batch;
|
||||
layer->inputs = inputs;
|
||||
layer->classes = classes;
|
||||
layer->coords = coords;
|
||||
layer->rescore = rescore;
|
||||
layer->background = background;
|
||||
int outputs = get_detection_layer_output_size(*layer);
|
||||
layer->output = calloc(batch*outputs, sizeof(float));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float));
|
||||
@ -39,38 +40,13 @@ detection_layer *make_detection_layer(int batch, int inputs, int classes, int co
|
||||
return layer;
|
||||
}
|
||||
|
||||
|
||||
void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
void dark_zone(detection_layer layer, int class, int start, network_state state)
|
||||
{
|
||||
int in_i = 0;
|
||||
int out_i = 0;
|
||||
int locations = get_detection_layer_locations(layer);
|
||||
int i,j;
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
int mask = (!state.truth || state.truth[out_i + layer.classes + 2]);
|
||||
float scale = 1;
|
||||
if(layer.rescore) scale = state.input[in_i++];
|
||||
for(j = 0; j < layer.classes; ++j){
|
||||
layer.output[out_i++] = scale*state.input[in_i++];
|
||||
}
|
||||
if(!layer.rescore){
|
||||
softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
|
||||
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
||||
}
|
||||
for(j = 0; j < layer.coords; ++j){
|
||||
layer.output[out_i++] = mask*state.input[in_i++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void dark_zone(detection_layer layer, int index, network_state state)
|
||||
{
|
||||
int size = layer.classes+layer.rescore+layer.coords;
|
||||
int index = start+layer.background+class;
|
||||
int size = layer.classes+layer.coords+layer.background;
|
||||
int location = (index%(7*7*size)) / size ;
|
||||
int r = location / 7;
|
||||
int c = location % 7;
|
||||
int class = index%size;
|
||||
if(layer.rescore) --class;
|
||||
int dr, dc;
|
||||
for(dr = -1; dr <= 1; ++dr){
|
||||
for(dc = -1; dc <= 1; ++dc){
|
||||
@ -79,7 +55,44 @@ void dark_zone(detection_layer layer, int index, network_state state)
|
||||
if((c + dc) > 6 || (c + dc) < 0) continue;
|
||||
int di = (dr*7 + dc) * size;
|
||||
if(state.truth[index+di]) continue;
|
||||
layer.delta[index + di] = 0;
|
||||
layer.output[index + di] = 0;
|
||||
//if(!state.truth[start+di]) continue;
|
||||
//layer.output[start + di] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
{
|
||||
int in_i = 0;
|
||||
int out_i = 0;
|
||||
int locations = get_detection_layer_locations(layer);
|
||||
int i,j;
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
|
||||
float scale = 1;
|
||||
if(layer.rescore) scale = state.input[in_i++];
|
||||
if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
|
||||
|
||||
for(j = 0; j < layer.classes; ++j){
|
||||
layer.output[out_i++] = scale*state.input[in_i++];
|
||||
}
|
||||
if(layer.background){
|
||||
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
|
||||
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
||||
}
|
||||
for(j = 0; j < layer.coords; ++j){
|
||||
layer.output[out_i++] = mask*state.input[in_i++];
|
||||
}
|
||||
}
|
||||
if(layer.background || 1){
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
int index = i*(layer.classes+layer.coords+layer.background);
|
||||
for(j= 0; j < layer.classes; ++j){
|
||||
if(state.truth[index+j+layer.background]){
|
||||
//dark_zone(layer, j, index, state);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -94,21 +107,17 @@ void backward_detection_layer(const detection_layer layer, network_state state)
|
||||
float scale = 1;
|
||||
float latent_delta = 0;
|
||||
if(layer.rescore) scale = state.input[in_i++];
|
||||
if(!layer.rescore){
|
||||
for(j = 0; j < layer.classes-1; ++j){
|
||||
if(state.truth[out_i + j]) dark_zone(layer, out_i+j, state);
|
||||
}
|
||||
}
|
||||
if(layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
|
||||
for(j = 0; j < layer.classes; ++j){
|
||||
latent_delta += state.input[in_i]*layer.delta[out_i];
|
||||
state.delta[in_i++] = scale*layer.delta[out_i++];
|
||||
}
|
||||
|
||||
if (!layer.rescore) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
||||
if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
||||
for(j = 0; j < layer.coords; ++j){
|
||||
state.delta[in_i++] = layer.delta[out_i++];
|
||||
}
|
||||
if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
|
||||
if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user