mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
stuff and things
This commit is contained in:
parent
252e3b1916
commit
4b60afcc64
@ -67,6 +67,7 @@ struct layer{
|
|||||||
int size;
|
int size;
|
||||||
int side;
|
int side;
|
||||||
int stride;
|
int stride;
|
||||||
|
int reverse;
|
||||||
int pad;
|
int pad;
|
||||||
int sqrt;
|
int sqrt;
|
||||||
int flip;
|
int flip;
|
||||||
@ -118,6 +119,7 @@ struct layer{
|
|||||||
int bias_match;
|
int bias_match;
|
||||||
int random;
|
int random;
|
||||||
float thresh;
|
float thresh;
|
||||||
|
int classfix;
|
||||||
|
|
||||||
int dontload;
|
int dontload;
|
||||||
int dontloadscales;
|
int dontloadscales;
|
||||||
|
@ -268,6 +268,7 @@ layer parse_region(list *options, size_params params)
|
|||||||
l.rescore = option_find_int_quiet(options, "rescore",0);
|
l.rescore = option_find_int_quiet(options, "rescore",0);
|
||||||
|
|
||||||
l.thresh = option_find_float(options, "thresh", .5);
|
l.thresh = option_find_float(options, "thresh", .5);
|
||||||
|
l.classfix = option_find_int_quiet(options, "classfix", 0);
|
||||||
|
|
||||||
l.coord_scale = option_find_float(options, "coord_scale", 1);
|
l.coord_scale = option_find_float(options, "coord_scale", 1);
|
||||||
l.object_scale = option_find_float(options, "object_scale", 1);
|
l.object_scale = option_find_float(options, "object_scale", 1);
|
||||||
@ -357,6 +358,7 @@ crop_layer parse_crop(list *options, size_params params)
|
|||||||
layer parse_reorg(list *options, size_params params)
|
layer parse_reorg(list *options, size_params params)
|
||||||
{
|
{
|
||||||
int stride = option_find_int(options, "stride",1);
|
int stride = option_find_int(options, "stride",1);
|
||||||
|
int reverse = option_find_int_quiet(options, "reverse",0);
|
||||||
|
|
||||||
int batch,h,w,c;
|
int batch,h,w,c;
|
||||||
h = params.h;
|
h = params.h;
|
||||||
@ -365,7 +367,7 @@ layer parse_reorg(list *options, size_params params)
|
|||||||
batch=params.batch;
|
batch=params.batch;
|
||||||
if(!(h && w && c)) error("Layer before reorg layer must output image.");
|
if(!(h && w && c)) error("Layer before reorg layer must output image.");
|
||||||
|
|
||||||
layer layer = make_reorg_layer(batch,w,h,c,stride);
|
layer layer = make_reorg_layer(batch,w,h,c,stride,reverse);
|
||||||
return layer;
|
return layer;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -89,6 +89,31 @@ float delta_region_box(box truth, float *x, float *biases, int n, int index, int
|
|||||||
return iou;
|
return iou;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, float *avg_cat)
|
||||||
|
{
|
||||||
|
int i, n;
|
||||||
|
if(hier){
|
||||||
|
float pred = 1;
|
||||||
|
while(class >= 0){
|
||||||
|
pred *= output[index + class];
|
||||||
|
int g = hier->group[class];
|
||||||
|
int offset = hier->group_offset[g];
|
||||||
|
for(i = 0; i < hier->group_size[g]; ++i){
|
||||||
|
delta[index + offset + i] = scale * (0 - output[index + offset + i]);
|
||||||
|
}
|
||||||
|
delta[index + class] = scale * (1 - output[index + class]);
|
||||||
|
|
||||||
|
class = hier->parent[class];
|
||||||
|
}
|
||||||
|
*avg_cat += pred;
|
||||||
|
} else {
|
||||||
|
for(n = 0; n < classes; ++n){
|
||||||
|
delta[index + n] = scale * (((n == class)?1 : 0) - output[index + n]);
|
||||||
|
if(n == class) *avg_cat += output[index + n];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
float logit(float x)
|
float logit(float x)
|
||||||
{
|
{
|
||||||
return log(x/(1.-x));
|
return log(x/(1.-x));
|
||||||
@ -125,6 +150,7 @@ void forward_region_layer(const region_layer l, network_state state)
|
|||||||
float avg_obj = 0;
|
float avg_obj = 0;
|
||||||
float avg_anyobj = 0;
|
float avg_anyobj = 0;
|
||||||
int count = 0;
|
int count = 0;
|
||||||
|
int class_count = 0;
|
||||||
*(l.cost) = 0;
|
*(l.cost) = 0;
|
||||||
for (b = 0; b < l.batch; ++b) {
|
for (b = 0; b < l.batch; ++b) {
|
||||||
for (j = 0; j < l.h; ++j) {
|
for (j = 0; j < l.h; ++j) {
|
||||||
@ -133,15 +159,28 @@ void forward_region_layer(const region_layer l, network_state state)
|
|||||||
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
|
int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
|
||||||
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
|
box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
|
||||||
float best_iou = 0;
|
float best_iou = 0;
|
||||||
|
int best_class = -1;
|
||||||
for(t = 0; t < 30; ++t){
|
for(t = 0; t < 30; ++t){
|
||||||
box truth = float_to_box(state.truth + t*5 + b*l.truths);
|
box truth = float_to_box(state.truth + t*5 + b*l.truths);
|
||||||
if(!truth.x) break;
|
if(!truth.x) break;
|
||||||
float iou = box_iou(pred, truth);
|
float iou = box_iou(pred, truth);
|
||||||
if (iou > best_iou) best_iou = iou;
|
if (iou > best_iou) {
|
||||||
|
best_class = state.truth[t*5 + b*l.truths + 4];
|
||||||
|
best_iou = iou;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
avg_anyobj += l.output[index + 4];
|
avg_anyobj += l.output[index + 4];
|
||||||
l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
|
l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
|
||||||
if(best_iou > l.thresh) l.delta[index + 4] = 0;
|
if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
|
||||||
|
else{
|
||||||
|
if (best_iou > l.thresh) {
|
||||||
|
l.delta[index + 4] = 0;
|
||||||
|
if(l.classfix > 0){
|
||||||
|
delta_region_class(l.output, l.delta, index + 5, best_class, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat);
|
||||||
|
++class_count;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if(*(state.net.seen) < 12800){
|
if(*(state.net.seen) < 12800){
|
||||||
box truth = {0};
|
box truth = {0};
|
||||||
@ -205,35 +244,15 @@ void forward_region_layer(const region_layer l, network_state state)
|
|||||||
|
|
||||||
int class = state.truth[t*5 + b*l.truths + 4];
|
int class = state.truth[t*5 + b*l.truths + 4];
|
||||||
if (l.map) class = l.map[class];
|
if (l.map) class = l.map[class];
|
||||||
if(l.softmax_tree){
|
delta_region_class(l.output, l.delta, best_index + 5, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
|
||||||
float pred = 1;
|
|
||||||
while(class >= 0){
|
|
||||||
pred *= l.output[best_index + 5 + class];
|
|
||||||
int g = l.softmax_tree->group[class];
|
|
||||||
int i;
|
|
||||||
int offset = l.softmax_tree->group_offset[g];
|
|
||||||
for(i = 0; i < l.softmax_tree->group_size[g]; ++i){
|
|
||||||
int index = best_index + 5 + offset + i;
|
|
||||||
l.delta[index] = l.class_scale * (0 - l.output[index]);
|
|
||||||
}
|
|
||||||
l.delta[best_index + 5 + class] = l.class_scale * (1 - l.output[best_index + 5 + class]);
|
|
||||||
|
|
||||||
class = l.softmax_tree->parent[class];
|
|
||||||
}
|
|
||||||
avg_cat += pred;
|
|
||||||
} else {
|
|
||||||
for(n = 0; n < l.classes; ++n){
|
|
||||||
l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
|
|
||||||
if(n == class) avg_cat += l.output[best_index + 5 + n];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
++count;
|
++count;
|
||||||
|
++class_count;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
//printf("\n");
|
//printf("\n");
|
||||||
reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
|
reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
|
||||||
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
||||||
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
|
printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
|
||||||
}
|
}
|
||||||
|
|
||||||
void backward_region_layer(const region_layer l, network_state state)
|
void backward_region_layer(const region_layer l, network_state state)
|
||||||
@ -245,7 +264,6 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b
|
|||||||
{
|
{
|
||||||
int i,j,n;
|
int i,j,n;
|
||||||
float *predictions = l.output;
|
float *predictions = l.output;
|
||||||
//int per_cell = 5*num+classes;
|
|
||||||
for (i = 0; i < l.w*l.h; ++i){
|
for (i = 0; i < l.w*l.h; ++i){
|
||||||
int row = i / l.w;
|
int row = i / l.w;
|
||||||
int col = i % l.w;
|
int col = i % l.w;
|
||||||
@ -253,6 +271,7 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b
|
|||||||
int index = i*l.n + n;
|
int index = i*l.n + n;
|
||||||
int p_index = index * (l.classes + 5) + 4;
|
int p_index = index * (l.classes + 5) + 4;
|
||||||
float scale = predictions[p_index];
|
float scale = predictions[p_index];
|
||||||
|
if(l.classfix == -1 && scale < .5) scale = 0;
|
||||||
int box_index = index * (l.classes + 5);
|
int box_index = index * (l.classes + 5);
|
||||||
boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
|
boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
|
||||||
boxes[index].x *= w;
|
boxes[index].x *= w;
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
|
||||||
|
|
||||||
layer make_reorg_layer(int batch, int h, int w, int c, int stride)
|
layer make_reorg_layer(int batch, int h, int w, int c, int stride, int reverse)
|
||||||
{
|
{
|
||||||
layer l = {0};
|
layer l = {0};
|
||||||
l.type = REORG;
|
l.type = REORG;
|
||||||
@ -13,9 +13,15 @@ layer make_reorg_layer(int batch, int h, int w, int c, int stride)
|
|||||||
l.h = h;
|
l.h = h;
|
||||||
l.w = w;
|
l.w = w;
|
||||||
l.c = c;
|
l.c = c;
|
||||||
|
if(reverse){
|
||||||
l.out_w = w*stride;
|
l.out_w = w*stride;
|
||||||
l.out_h = h*stride;
|
l.out_h = h*stride;
|
||||||
l.out_c = c/(stride*stride);
|
l.out_c = c/(stride*stride);
|
||||||
|
}else{
|
||||||
|
l.out_w = w/stride;
|
||||||
|
l.out_h = h/stride;
|
||||||
|
l.out_c = c*(stride*stride);
|
||||||
|
}
|
||||||
fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c);
|
fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c);
|
||||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||||
l.inputs = h*w*c;
|
l.inputs = h*w*c;
|
||||||
@ -25,13 +31,13 @@ layer make_reorg_layer(int batch, int h, int w, int c, int stride)
|
|||||||
|
|
||||||
l.forward = forward_reorg_layer;
|
l.forward = forward_reorg_layer;
|
||||||
l.backward = backward_reorg_layer;
|
l.backward = backward_reorg_layer;
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
l.forward_gpu = forward_reorg_layer_gpu;
|
l.forward_gpu = forward_reorg_layer_gpu;
|
||||||
l.backward_gpu = backward_reorg_layer_gpu;
|
l.backward_gpu = backward_reorg_layer_gpu;
|
||||||
|
|
||||||
l.output_gpu = cuda_make_array(l.output, output_size);
|
l.output_gpu = cuda_make_array(l.output, output_size);
|
||||||
l.delta_gpu = cuda_make_array(l.delta, output_size);
|
l.delta_gpu = cuda_make_array(l.delta, output_size);
|
||||||
#endif
|
#endif
|
||||||
return l;
|
return l;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -52,12 +58,12 @@ void resize_reorg_layer(layer *l, int w, int h)
|
|||||||
l->output = realloc(l->output, output_size * sizeof(float));
|
l->output = realloc(l->output, output_size * sizeof(float));
|
||||||
l->delta = realloc(l->delta, output_size * sizeof(float));
|
l->delta = realloc(l->delta, output_size * sizeof(float));
|
||||||
|
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
cuda_free(l->output_gpu);
|
cuda_free(l->output_gpu);
|
||||||
cuda_free(l->delta_gpu);
|
cuda_free(l->delta_gpu);
|
||||||
l->output_gpu = cuda_make_array(l->output, output_size);
|
l->output_gpu = cuda_make_array(l->output, output_size);
|
||||||
l->delta_gpu = cuda_make_array(l->delta, output_size);
|
l->delta_gpu = cuda_make_array(l->delta, output_size);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
void forward_reorg_layer(const layer l, network_state state)
|
void forward_reorg_layer(const layer l, network_state state)
|
||||||
@ -107,11 +113,19 @@ void backward_reorg_layer(const layer l, network_state state)
|
|||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
void forward_reorg_layer_gpu(layer l, network_state state)
|
void forward_reorg_layer_gpu(layer l, network_state state)
|
||||||
{
|
{
|
||||||
|
if(l.reverse){
|
||||||
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
|
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
|
||||||
|
}else {
|
||||||
|
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 0, l.output_gpu);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void backward_reorg_layer_gpu(layer l, network_state state)
|
void backward_reorg_layer_gpu(layer l, network_state state)
|
||||||
{
|
{
|
||||||
|
if(l.reverse){
|
||||||
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
|
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
|
||||||
|
}else{
|
||||||
|
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
#include "layer.h"
|
#include "layer.h"
|
||||||
#include "network.h"
|
#include "network.h"
|
||||||
|
|
||||||
layer make_reorg_layer(int batch, int h, int w, int c, int stride);
|
layer make_reorg_layer(int batch, int h, int w, int c, int stride, int reverse);
|
||||||
void resize_reorg_layer(layer *l, int w, int h);
|
void resize_reorg_layer(layer *l, int w, int h);
|
||||||
void forward_reorg_layer(const layer l, network_state state);
|
void forward_reorg_layer(const layer l, network_state state);
|
||||||
void backward_reorg_layer(const layer l, network_state state);
|
void backward_reorg_layer(const layer l, network_state state);
|
||||||
|
Loading…
Reference in New Issue
Block a user