mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
New data format
This commit is contained in:
@ -15,6 +15,8 @@ network make_network(int n)
|
||||
net.n = n;
|
||||
net.layers = calloc(net.n, sizeof(void *));
|
||||
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
||||
net.outputs = 0;
|
||||
net.output = 0;
|
||||
return net;
|
||||
}
|
||||
|
||||
@ -45,13 +47,13 @@ void forward_network(network net, double *input)
|
||||
}
|
||||
}
|
||||
|
||||
void update_network(network net, double step)
|
||||
void update_network(network net, double step, double momentum, double decay)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer(layer, step, 0.9, .01);
|
||||
update_convolutional_layer(layer, step, momentum, decay);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
@ -61,7 +63,7 @@ void update_network(network net, double step)
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer, step, .9, 0);
|
||||
update_connected_layer(layer, step, momentum, decay);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -111,8 +113,26 @@ double *get_network_delta(network net)
|
||||
return get_network_delta_layer(net, net.n-1);
|
||||
}
|
||||
|
||||
void learn_network(network net, double *input)
|
||||
void calculate_error_network(network net, double *truth)
|
||||
{
|
||||
double *delta = get_network_delta(net);
|
||||
double *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
delta[i] = truth[i] - out[i];
|
||||
}
|
||||
}
|
||||
|
||||
int get_predicted_class_network(network net)
|
||||
{
|
||||
double *out = get_network_output(net);
|
||||
int k = get_network_output_size(net);
|
||||
return max_index(out, k);
|
||||
}
|
||||
|
||||
void backward_network(network net, double *input, double *truth)
|
||||
{
|
||||
calculate_error_network(net, truth);
|
||||
int i;
|
||||
double *prev_input;
|
||||
double *prev_delta;
|
||||
@ -145,40 +165,43 @@ void learn_network(network net, double *input)
|
||||
}
|
||||
}
|
||||
|
||||
void train_network_batch(network net, batch b)
|
||||
int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
|
||||
{
|
||||
int i,j;
|
||||
int k = get_network_output_size(net);
|
||||
forward_network(net, x);
|
||||
int class = get_predicted_class_network(net);
|
||||
backward_network(net, x, y);
|
||||
update_network(net, step, momentum, decay);
|
||||
return (y[class]?1:0);
|
||||
}
|
||||
|
||||
double train_network_sgd(network net, data d, double step, double momentum,double decay)
|
||||
{
|
||||
int i;
|
||||
int correct = 0;
|
||||
for(i = 0; i < b.n; ++i){
|
||||
show_image(b.images[i], "Input");
|
||||
forward_network(net, b.images[i].data);
|
||||
image o = get_network_image(net);
|
||||
if(o.h) show_image_collapsed(o, "Output");
|
||||
double *output = get_network_output(net);
|
||||
double *delta = get_network_delta(net);
|
||||
int max_k = 0;
|
||||
double max = 0;
|
||||
for(j = 0; j < k; ++j){
|
||||
delta[j] = b.truth[i][j]-output[j];
|
||||
if(output[j] > max) {
|
||||
max = output[j];
|
||||
max_k = j;
|
||||
}
|
||||
for(i = 0; i < d.X.rows; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
if((i+1)%10 == 0){
|
||||
printf("%d: %f\n", (i+1), (double)correct/(i+1));
|
||||
}
|
||||
if(b.truth[i][max_k]) ++correct;
|
||||
printf("%f\n", (double)correct/(i+1));
|
||||
learn_network(net, b.images[i].data);
|
||||
update_network(net, .001);
|
||||
}
|
||||
return (double)correct/d.X.rows;
|
||||
}
|
||||
|
||||
void train_network(network net, data d, double step, double momentum, double decay)
|
||||
{
|
||||
int i;
|
||||
int correct = 0;
|
||||
for(i = 0; i < d.X.rows; ++i){
|
||||
correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
|
||||
if(i%100 == 0){
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
cvWaitKey(10);
|
||||
}
|
||||
}
|
||||
visualize_network(net);
|
||||
print_network(net);
|
||||
cvWaitKey(100);
|
||||
printf("Accuracy: %f\n", (double)correct/b.n);
|
||||
printf("Accuracy: %f\n", (double)correct/d.X.rows);
|
||||
}
|
||||
|
||||
int get_network_output_size_layer(network net, int i)
|
||||
@ -250,7 +273,7 @@ void print_network(network net)
|
||||
{
|
||||
int i,j;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
double *output;
|
||||
double *output = 0;
|
||||
int n = 0;
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
@ -283,3 +306,17 @@ void print_network(network net)
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
double network_accuracy(network net, data d)
|
||||
{
|
||||
int i;
|
||||
int correct = 0;
|
||||
int k = get_network_output_size(net);
|
||||
for(i = 0; i < d.X.rows; ++i){
|
||||
forward_network(net, d.X.vals[i]);
|
||||
double *out = get_network_output(net);
|
||||
int guess = max_index(out, k);
|
||||
if(d.y.vals[i][guess]) ++correct;
|
||||
}
|
||||
return (double)correct/d.X.rows;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user