diff --git a/src/captcha.c b/src/captcha.c index 6e02f5ac..ca6dfe06 100644 --- a/src/captcha.c +++ b/src/captcha.c @@ -23,7 +23,7 @@ void train_captcha(char *cfgfile, char *weightfile) while(1){ ++i; time=clock(); - data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200); + data train = load_data_captcha(paths, imgs, plist->size, 10, 200, 60); translate_data_rows(train, -128); scale_data_rows(train, 1./128); printf("Loaded: %lf seconds\n", sec(clock()-time)); @@ -56,11 +56,11 @@ void decode_captcha(char *cfgfile, char *weightfile) printf("Enter filename: "); fgets(filename, 256, stdin); strtok(filename, "\n"); - image im = load_image_color(filename, 57, 300); + image im = load_image_color(filename, 300, 57); scale_image(im, 1./255.); float *X = im.data; float *predictions = network_predict(net, X); - image out = float_to_image(57, 300, 1, predictions); + image out = float_to_image(300, 57, 1, predictions); show_image(out, "decoded"); cvWaitKey(0); free_image(im); @@ -87,7 +87,7 @@ void encode_captcha(char *cfgfile, char *weightfile) while(1){ ++i; time=clock(); - data train = load_data_captcha_encode(paths, imgs, plist->size, 57, 300); + data train = load_data_captcha_encode(paths, imgs, plist->size, 300, 57); scale_data_rows(train, 1./255); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); @@ -118,7 +118,7 @@ void validate_captcha(char *cfgfile, char *weightfile) list *plist = get_paths("/data/captcha/solved.hard"); char **paths = (char **)list_to_array(plist); int imgs = plist->size; - data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200); + data valid = load_data_captcha(paths, imgs, 0, 10, 200, 60); translate_data_rows(valid, -128); scale_data_rows(valid, 1./128); matrix pred = network_predict_data(net, valid); @@ -157,7 +157,7 @@ void test_captcha(char *cfgfile, char *weightfile) //printf("Enter filename: "); fgets(filename, 256, stdin); strtok(filename, "\n"); - image im = load_image_color(filename, 60, 200); + image im = load_image_color(filename, 200, 60); translate_image(im, -128); scale_image(im, 1/128.); float *X = im.data; diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c index e20a41c8..ade2ac1d 100644 --- a/src/convolutional_layer.c +++ b/src/convolutional_layer.c @@ -29,7 +29,7 @@ image get_convolutional_image(convolutional_layer layer) h = convolutional_out_height(layer); w = convolutional_out_width(layer); c = layer.n; - return float_to_image(h,w,c,layer.output); + return float_to_image(w,h,c,layer.output); } image get_convolutional_delta(convolutional_layer layer) @@ -38,7 +38,7 @@ image get_convolutional_delta(convolutional_layer layer) h = convolutional_out_height(layer); w = convolutional_out_width(layer); c = layer.n; - return float_to_image(h,w,c,layer.delta); + return float_to_image(w,h,c,layer.delta); } convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) @@ -217,42 +217,22 @@ image get_convolutional_filter(convolutional_layer layer, int i) int h = layer.size; int w = layer.size; int c = layer.c; - return float_to_image(h,w,c,layer.filters+i*h*w*c); + return float_to_image(w,h,c,layer.filters+i*h*w*c); } -image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) +image *get_filters(convolutional_layer layer) { image *filters = calloc(layer.n, sizeof(image)); - int i,j,k,c; - if(!prev_filters){ - for(i = 0; i < layer.n; ++i){ - filters[i] = copy_image(get_convolutional_filter(layer, i)); - } - } - else{ - image base = prev_filters[0]; - for(i = 0; i < layer.n; ++i){ - image filter = get_convolutional_filter(layer, i); - filters[i] = make_image(base.h, base.w, base.c); - for(j = 0; j < layer.size; ++j){ - for(k = 0; k < layer.size; ++k){ - for(c = 0; c < layer.c; ++c){ - float weight = get_pixel(filter, j, k, c); - image prev_filter = copy_image(prev_filters[c]); - scale_image(prev_filter, weight); - add_into_image(prev_filter, filters[i], 0,0); - free_image(prev_filter); - } - } - } - } + int i; + for(i = 0; i < layer.n; ++i){ + filters[i] = copy_image(get_convolutional_filter(layer, i)); } return filters; } image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) { - image *single_filters = weighted_sum_filters(layer, 0); + image *single_filters = get_filters(layer); show_images(single_filters, layer.n, window); image delta = get_convolutional_image(layer); diff --git a/src/crop_layer.c b/src/crop_layer.c index cf1383ea..819b7547 100644 --- a/src/crop_layer.c +++ b/src/crop_layer.c @@ -7,7 +7,7 @@ image get_crop_image(crop_layer layer) int h = layer.crop_height; int w = layer.crop_width; int c = layer.c; - return float_to_image(h,w,c,layer.output); + return float_to_image(w,h,c,layer.output); } crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip) diff --git a/src/data.c b/src/data.c index 6a05d418..c454d84c 100644 --- a/src/data.c +++ b/src/data.c @@ -47,7 +47,7 @@ char **get_random_paths(char **paths, int n, int m) return random_paths; } -matrix load_image_paths(char **paths, int n, int h, int w) +matrix load_image_paths(char **paths, int n, int w, int h) { int i; matrix X; @@ -56,7 +56,7 @@ matrix load_image_paths(char **paths, int n, int h, int w) X.cols = 0; for(i = 0; i < n; ++i){ - image im = load_image_color(paths[i], h, w); + image im = load_image_color(paths[i], w, h); X.vals[i] = im.data; X.cols = im.h*im.w*im.c; } @@ -207,12 +207,12 @@ void fill_truth_captcha(char *path, int n, float *truth) } } -data load_data_captcha(char **paths, int n, int m, int k, int h, int w) +data load_data_captcha(char **paths, int n, int m, int k, int w, int h) { if(m) paths = get_random_paths(paths, n, m); data d; d.shallow = 0; - d.X = load_image_paths(paths, n, h, w); + d.X = load_image_paths(paths, n, w, h); d.y = make_matrix(n, k*NUMCHARS); int i; for(i = 0; i < n; ++i){ @@ -222,12 +222,12 @@ data load_data_captcha(char **paths, int n, int m, int k, int h, int w) return d; } -data load_data_captcha_encode(char **paths, int n, int m, int h, int w) +data load_data_captcha_encode(char **paths, int n, int m, int w, int h) { if(m) paths = get_random_paths(paths, n, m); data d; d.shallow = 0; - d.X = load_image_paths(paths, n, h, w); + d.X = load_image_paths(paths, n, w, h); d.X.cols = 17100; d.y = d.X; if(m) free(paths); @@ -258,21 +258,6 @@ matrix load_labels_paths(char **paths, int n, char **labels, int k) return y; } -data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w) -{ - list *plist = get_paths(filename); - char **paths = (char **)list_to_array(plist); - int n = plist->size; - data d; - d.shallow = 0; - d.X = load_image_paths(paths, n, h, w); - d.y = load_labels_paths(paths, n, labels, k); - free_list_contents(plist); - free_list(plist); - free(paths); - return d; -} - char **get_labels(char *filename) { list *plist = get_paths(filename); @@ -292,7 +277,7 @@ void free_data(data d) } } -data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int num_boxes, int background) +data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background) { char **random_paths = get_random_paths(paths, n, m); int i; @@ -325,12 +310,12 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int classes, float sy = (float)sheight / oh; int flip = rand()%2; - image cropped = crop_image(orig, ptop, pleft, sheight, swidth); + image cropped = crop_image(orig, pleft, ptop, swidth, sheight); float dx = ((float)pleft/ow)/sx; float dy = ((float)ptop /oh)/sy; free_image(orig); - image sized = resize_image(cropped, h, w); + image sized = resize_image(cropped, w, h); free_image(cropped); if(flip) flip_image(sized); d.X.vals[i] = sized.data; @@ -345,14 +330,14 @@ void *load_detection_thread(void *ptr) { printf("Loading data: %d\n", rand()); struct load_args a = *(struct load_args*)ptr; - *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.num_boxes, a.background); + *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background); translate_data_rows(*a.d, -128); scale_data_rows(*a.d, 1./128); free(ptr); return 0; } -pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int background, data *d) +pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int w, int h, int nh, int nw, int background, data *d) { pthread_t thread; struct load_args *args = calloc(1, sizeof(struct load_args)); @@ -373,12 +358,12 @@ pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, in return thread; } -data load_data(char **paths, int n, int m, char **labels, int k, int h, int w) +data load_data(char **paths, int n, int m, char **labels, int k, int w, int h) { if(m) paths = get_random_paths(paths, n, m); data d; d.shallow = 0; - d.X = load_image_paths(paths, n, h, w); + d.X = load_image_paths(paths, n, w, h); d.y = load_labels_paths(paths, n, labels, k); if(m) free(paths); return d; @@ -387,14 +372,14 @@ data load_data(char **paths, int n, int m, char **labels, int k, int h, int w) void *load_in_thread(void *ptr) { struct load_args a = *(struct load_args*)ptr; - *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w); + *a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.w, a.h); translate_data_rows(*a.d, -128); scale_data_rows(*a.d, 1./128); free(ptr); return 0; } -pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d) +pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int w, int h, data *d) { pthread_t thread; struct load_args *args = calloc(1, sizeof(struct load_args)); diff --git a/src/data.h b/src/data.h index f38a8d00..e0d84d2c 100644 --- a/src/data.h +++ b/src/data.h @@ -27,17 +27,17 @@ typedef struct{ void free_data(data d); void print_letters(float *pred, int n); -data load_data_captcha(char **paths, int n, int m, int k, int h, int w); -data load_data_captcha_encode(char **paths, int n, int m, int h, int w); -data load_data(char **paths, int n, int m, char **labels, int k, int h, int w); -pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d); +data load_data_captcha(char **paths, int n, int m, int k, int w, int h); +data load_data_captcha_encode(char **paths, int n, int m, int w, int h); +data load_data(char **paths, int n, int m, char **labels, int k, int w, int h); +pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int w, int h, data *d); -pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int background, data *d); -data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int num_boxes, int background); +pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int w, int h, int nh, int nw, int background, data *d); +data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background); -data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w); data load_cifar10_data(char *filename); data load_all_cifar10(); + list *get_paths(char *filename); char **get_labels(char *filename); void get_random_batch(data d, int n, float *X, float *y); diff --git a/src/deconvolutional_layer.c b/src/deconvolutional_layer.c index 83147b55..532045c2 100644 --- a/src/deconvolutional_layer.c +++ b/src/deconvolutional_layer.c @@ -31,7 +31,7 @@ image get_deconvolutional_image(deconvolutional_layer layer) h = deconvolutional_out_height(layer); w = deconvolutional_out_width(layer); c = layer.n; - return float_to_image(h,w,c,layer.output); + return float_to_image(w,h,c,layer.output); } image get_deconvolutional_delta(deconvolutional_layer layer) @@ -40,7 +40,7 @@ image get_deconvolutional_delta(deconvolutional_layer layer) h = deconvolutional_out_height(layer); w = deconvolutional_out_width(layer); c = layer.n; - return float_to_image(h,w,c,layer.delta); + return float_to_image(w,h,c,layer.delta); } deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) diff --git a/src/detection.c b/src/detection.c index 61ccc31d..1e24418b 100644 --- a/src/detection.c +++ b/src/detection.c @@ -83,14 +83,14 @@ void train_detection(char *cfgfile, char *weightfile) plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); } paths = (char **)list_to_array(plist); - pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.h, net.w, side, side, background, &buffer); + pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); clock_t time; while(1){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; - load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.h, net.w, side, side, background, &buffer); + load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); /* image im = float_to_image(im_dim, im_dim, 3, train.X.vals[114]); @@ -124,6 +124,7 @@ void validate_detection(char *cfgfile, char *weightfile) srand(time(0)); list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); + //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); char **paths = (char **)list_to_array(plist); @@ -142,7 +143,7 @@ void validate_detection(char *cfgfile, char *weightfile) fprintf(stderr, "%d\n", m); data val, buffer; - pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.h, net.w, &buffer); + pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.w, net.h, &buffer); clock_t time; for(i = 1; i <= splits; ++i){ time=clock(); @@ -151,7 +152,7 @@ void validate_detection(char *cfgfile, char *weightfile) num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); - if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.h, net.w, &buffer); + if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &buffer); fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); matrix pred = network_predict_data(net, val); @@ -171,7 +172,9 @@ void validate_detection(char *cfgfile, char *weightfile) h = h*h; float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); w = w*w; - printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w); + float prob = scale*pred.vals[j][k+class+background+nuisance]; + if(prob < .001) continue; + printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, prob, y, x, h, w); } } } diff --git a/src/image.c b/src/image.c index 2cfce634..32a51cc5 100644 --- a/src/image.c +++ b/src/image.c @@ -53,21 +53,6 @@ void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b } } -void jitter_image(image a, int h, int w, int dh, int dw) -{ - int i,j,k; - for(k = 0; k < a.c; ++k){ - for(i = 0; i < h; ++i){ - for(j = 0; j < w; ++j){ - int src = j + dw + (i+dh)*a.w + k*a.w*a.h; - int dst = j + i*w + k*w*h; - //printf("%d %d\n", src, dst); - a.data[dst] = a.data[src]; - } - } - } -} - void flip_image(image a) { int i,j,k; @@ -87,7 +72,7 @@ void flip_image(image a) image image_distance(image a, image b) { int i,j; - image dist = make_image(a.h, a.w, 1); + image dist = make_image(a.w, a.h, 1); for(i = 0; i < a.c; ++i){ for(j = 0; j < a.h*a.w; ++j){ dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); @@ -99,20 +84,14 @@ image image_distance(image a, image b) return dist; } -void subtract_image(image a, image b) +void embed_image(image source, image dest, int dx, int dy) { - int i; - for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i]; -} - -void embed_image(image source, image dest, int h, int w) -{ - int i,j,k; + int x,y,k; for(k = 0; k < source.c; ++k){ - for(i = 0; i < source.h; ++i){ - for(j = 0; j < source.w; ++j){ - float val = get_pixel(source, i,j,k); - set_pixel(dest, h+i, w+j, k, val); + for(y = 0; y < source.h; ++y){ + for(x = 0; x < source.w; ++x){ + float val = get_pixel(source, x,y,k); + set_pixel(dest, dx+x, dy+y, k, val); } } } @@ -122,22 +101,17 @@ image collapse_image_layers(image source, int border) { int h = source.h; h = (h+border)*source.c - border; - image dest = make_image(h, source.w, 1); + image dest = make_image(source.w, h, 1); int i; for(i = 0; i < source.c; ++i){ image layer = get_image_layer(source, i); int h_offset = i*(source.h+border); - embed_image(layer, dest, h_offset, 0); + embed_image(layer, dest, 0, h_offset); free_image(layer); } return dest; } -void z_normalize_image(image p) -{ - normalize_array(p.data, p.h*p.w*p.c); -} - void normalize_image(image p) { float *min = calloc(p.c, sizeof(float)); @@ -167,24 +141,6 @@ void normalize_image(image p) free(max); } -float avg_image_layer(image m, int l) -{ - int i; - float sum = 0; - for(i = 0; i < m.h*m.w; ++i){ - sum += m.data[l*m.h*m.w + i]; - } - return sum/(m.h*m.w); -} - -void threshold_image(image p, float t) -{ - int i; - for(i = 0; i < p.w*p.h*p.c; ++i){ - if(p.data[i] < t) p.data[i] = 0; - } -} - image copy_image(image p) { image copy = p; @@ -196,7 +152,7 @@ image copy_image(image p) void show_image(image p, char *name) { - int i,j,k; + int x,y,k; image copy = copy_image(p); normalize_image(copy); @@ -209,10 +165,10 @@ void show_image(image p, char *name) cvNamedWindow(buff, CV_WINDOW_AUTOSIZE); //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); ++windows; - for(i = 0; i < p.h; ++i){ - for(j = 0; j < p.w; ++j){ + for(y = 0; y < p.h; ++y){ + for(x = 0; x < p.w; ++x){ for(k= 0; k < p.c; ++k){ - disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); + disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); } } } @@ -235,7 +191,7 @@ void show_image(image p, char *name) void save_image(image p, char *name) { - int i,j,k; + int x,y,k; image copy = copy_image(p); normalize_image(copy); @@ -245,10 +201,10 @@ void save_image(image p, char *name) IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); int step = disp->widthStep; - for(i = 0; i < p.h; ++i){ - for(j = 0; j < p.w; ++j){ + for(y = 0; y < p.h; ++y){ + for(x = 0; x < p.w; ++x){ for(k= 0; k < p.c; ++k){ - disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); + disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); } } } @@ -276,7 +232,7 @@ void show_image_collapsed(image p, char *name) free_image(c); } -image make_empty_image(int h, int w, int c) +image make_empty_image(int w, int h, int c) { image out; out.data = 0; @@ -286,30 +242,20 @@ image make_empty_image(int h, int w, int c) return out; } -image make_image(int h, int w, int c) +image make_image(int w, int h, int c) { - image out = make_empty_image(h,w,c); + image out = make_empty_image(w,h,c); out.data = calloc(h*w*c, sizeof(float)); return out; } -image float_to_image(int h, int w, int c, float *data) +image float_to_image(int w, int h, int c, float *data) { - image out = make_empty_image(h,w,c); + image out = make_empty_image(w,h,c); out.data = data; return out; } -void zero_image(image m) -{ - memset(m.data, 0, m.h*m.w*m.c*sizeof(float)); -} - -void zero_channel(image m, int c) -{ - memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float)); -} - void rotate_image(image m) { int i,j; @@ -322,29 +268,6 @@ void rotate_image(image m) } } -image make_random_image(int h, int w, int c) -{ - image out = make_image(h,w,c); - int i; - for(i = 0; i < h*w*c; ++i){ - out.data[i] = rand_normal(); - //out.data[i] = rand()%3; - } - return out; -} - -void add_into_image(image src, image dest, int h, int w) -{ - int i,j,k; - for(k = 0; k < src.c; ++k){ - for(i = 0; i < src.h; ++i){ - for(j = 0; j < src.w; ++j){ - add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k)); - } - } - } -} - void translate_image(image m, float s) { int i; @@ -357,24 +280,6 @@ void scale_image(image m, float s) for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; } -image make_random_kernel(int size, int c, float scale) -{ - int pad; - if((pad=(size%2==0))) ++size; - image out = make_random_image(size,size,c); - scale_image(out, scale); - int i,k; - if(pad){ - for(k = 0; k < out.c; ++k){ - for(i = 0; i < size; ++i) { - set_pixel(out, i, 0, k, 0); - set_pixel(out, 0, i, k, 0); - } - } - } - return out; -} - image ipl_to_image(IplImage* src) { unsigned char *data = (unsigned char *)src->imageData; @@ -382,7 +287,7 @@ image ipl_to_image(IplImage* src) int w = src->width; int c = src->nChannels; int step = src->widthStep; - image out = make_image(h,w,c); + image out = make_image(w, h, c); int i, j, k, count=0;; for(k= 0; k < c; ++k){ @@ -395,47 +300,55 @@ image ipl_to_image(IplImage* src) return out; } -image crop_image(image im, int dr, int dc, int h, int w) +image crop_image(image im, int dx, int dy, int w, int h) { - image cropped = make_image(h, w, im.c); + image cropped = make_image(w, h, im.c); int i, j, k; for(k = 0; k < im.c; ++k){ for(j = 0; j < h; ++j){ for(i = 0; i < w; ++i){ - int r = j + dr; - int c = i + dc; + int r = j + dy; + int c = i + dx; float val = 128; if (r >= 0 && r < im.h && c >= 0 && c < im.w) { - val = get_pixel(im, r, c, k); + val = get_pixel(im, c, r, k); } - set_pixel(cropped, j, i, k, val); + set_pixel(cropped, i, j, k, val); } } } return cropped; } -// #wikipedia -image resize_image(image im, int h, int w) +float billinear_interpolate(image im, float x, float y, int c) { - image resized = make_image(h, w, im.c); + int ix = (int) x; + int iy = (int) y; + + float dx = x - ix; + float dy = y - iy; + + float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + + dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + + (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + + dy * dx * get_pixel_extend(im, ix+1, iy+1, c); + return val; +} + +// #wikipedia +image resize_image(image im, int w, int h) +{ + image resized = make_image(w, h, im.c); int r, c, k; - float h_scale = (float)(im.h - 1) / (h - 1) - .00001; - float w_scale = (float)(im.w - 1) / (w - 1) - .00001; + float w_scale = (float)(im.w - 1) / (w - 1); + float h_scale = (float)(im.h - 1) / (h - 1); for(k = 0; k < im.c; ++k){ for(r = 0; r < h; ++r){ for(c = 0; c < w; ++c){ - float sr = r*h_scale; - float sc = c*w_scale; - int ir = (int)sr; - int ic = (int)sc; - float x = sr-ir; - float y = sc-ic; - float val = (1-x) * (1-y) * get_pixel(im, ir, ic, k) + - x * (1-y) * get_pixel(im, ir+1, ic, k) + - (1-x) * y * get_pixel(im, ir, ic+1, k) + - x * y * get_pixel(im, ir+1, ic+1, k); - set_pixel(resized, r, c, k, val); + float sx = c*w_scale; + float sy = r*h_scale; + float val = billinear_interpolate(im, sx, sy, k); + set_pixel(resized, c, r, k, val); } } } @@ -445,10 +358,10 @@ image resize_image(image im, int h, int w) void test_resize(char *filename) { image im = load_image(filename, 0,0); - image small = resize_image(im, 63, 65); - image big = resize_image(im, 512, 513); - image crop = crop_image(im, 10, 50, 100, 100); - image crop2 = crop_image(im, -50, -30, 400, 291); + image small = resize_image(im, 65, 63); + image big = resize_image(im, 513, 512); + image crop = crop_image(im, 50, 10, 100, 100); + image crop2 = crop_image(im, -30, -50, 291, 400); show_image(im, "original"); show_image(small, "smaller"); show_image(big, "bigger"); @@ -457,7 +370,7 @@ void test_resize(char *filename) cvWaitKey(0); } -image load_image_color(char *filename, int h, int w) +image load_image_color(char *filename, int w, int h) { IplImage* src = 0; if( (src = cvLoadImage(filename, 1)) == 0 ) @@ -467,7 +380,7 @@ image load_image_color(char *filename, int h, int w) } image out = ipl_to_image(src); if((h && w) && (h != out.h || w != out.w)){ - image resized = resize_image(out, h, w); + image resized = resize_image(out, w, h); free_image(out); out = resized; } @@ -475,7 +388,7 @@ image load_image_color(char *filename, int h, int w) return out; } -image load_image(char *filename, int h, int w) +image load_image(char *filename, int w, int h) { IplImage* src = 0; if( (src = cvLoadImage(filename,-1)) == 0 ) @@ -485,7 +398,7 @@ image load_image(char *filename, int h, int w) } image out = ipl_to_image(src); if((h && w) && (h != out.h || w != out.w)){ - image resized = resize_image(out, h, w); + image resized = resize_image(out, w, h); free_image(out); out = resized; } @@ -495,209 +408,28 @@ image load_image(char *filename, int h, int w) image get_image_layer(image m, int l) { - image out = make_image(m.h, m.w, 1); + image out = make_image(m.w, m.h, 1); int i; for(i = 0; i < m.h*m.w; ++i){ out.data[i] = m.data[i+l*m.h*m.w]; } return out; } -image get_sub_image(image m, int h, int w, int dh, int dw) -{ - image out = make_image(dh, dw, m.c); - int i,j,k; - for(k = 0; k < out.c; ++k){ - for(i = 0; i < dh; ++i){ - for(j = 0; j < dw; ++j){ - float val = get_pixel(m, h+i, w+j, k); - set_pixel(out, i, j, k, val); - } - } - } - return out; -} float get_pixel(image m, int x, int y, int c) { - assert(x < m.h && y < m.w && c < m.c); - return m.data[c*m.h*m.w + x*m.w + y]; + assert(x < m.w && y < m.h && c < m.c); + return m.data[c*m.h*m.w + y*m.w + x]; } float get_pixel_extend(image m, int x, int y, int c) { - if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0; + if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0; return get_pixel(m, x, y, c); } void set_pixel(image m, int x, int y, int c, float val) { - assert(x < m.h && y < m.w && c < m.c); - m.data[c*m.h*m.w + x*m.w + y] = val; -} -void set_pixel_extend(image m, int x, int y, int c, float val) -{ - if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; - set_pixel(m, x, y, c, val); -} - -void add_pixel(image m, int x, int y, int c, float val) -{ - assert(x < m.h && y < m.w && c < m.c); - m.data[c*m.h*m.w + x*m.w + y] += val; -} - -void add_pixel_extend(image m, int x, int y, int c, float val) -{ - if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; - add_pixel(m, x, y, c, val); -} - -void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge) -{ - int x,y,i,j; - int xstart, xend, ystart, yend; - if(edge){ - xstart = ystart = 0; - xend = m.h; - yend = m.w; - }else{ - xstart = kernel.h/2; - ystart = kernel.w/2; - xend = m.h-kernel.h/2; - yend = m.w - kernel.w/2; - } - for(x = xstart; x < xend; x += stride){ - for(y = ystart; y < yend; y += stride){ - float sum = 0; - for(i = 0; i < kernel.h; ++i){ - for(j = 0; j < kernel.w; ++j){ - sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc); - } - } - add_pixel(out, (x-xstart)/stride, (y-ystart)/stride, oc, sum); - } - } -} - -float single_convolve(image m, image kernel, int x, int y) -{ - float sum = 0; - int i, j, k; - for(i = 0; i < kernel.h; ++i){ - for(j = 0; j < kernel.w; ++j){ - for(k = 0; k < kernel.c; ++k){ - sum += get_pixel(kernel, i, j, k)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k); - } - } - } - return sum; -} - -void convolve(image m, image kernel, int stride, int channel, image out, int edge) -{ - assert(m.c == kernel.c); - int i; - zero_channel(out, channel); - for(i = 0; i < m.c; ++i){ - two_d_convolve(m, i, kernel, i, stride, out, channel, edge); - } - /* - int j; - for(i = 0; i < m.h; i += stride){ - for(j = 0; j < m.w; j += stride){ - float val = single_convolve(m, kernel, i, j); - set_pixel(out, i/stride, j/stride, channel, val); - } - } - */ -} - -void upsample_image(image m, int stride, image out) -{ - int i,j,k; - zero_image(out); - for(k = 0; k < m.c; ++k){ - for(i = 0; i < m.h; ++i){ - for(j = 0; j< m.w; ++j){ - float val = get_pixel(m, i, j, k); - set_pixel(out, i*stride, j*stride, k, val); - } - } - } -} - -void single_update(image m, image update, int x, int y, float error) -{ - int i, j, k; - for(i = 0; i < update.h; ++i){ - for(j = 0; j < update.w; ++j){ - for(k = 0; k < update.c; ++k){ - float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); - add_pixel(update, i, j, k, val*error); - } - } - } -} - -void kernel_update(image m, image update, int stride, int channel, image out, int edge) -{ - assert(m.c == update.c); - zero_image(update); - int i, j, istart, jstart, iend, jend; - if(edge){ - istart = jstart = 0; - iend = m.h; - jend = m.w; - }else{ - istart = update.h/2; - jstart = update.w/2; - iend = m.h-update.h/2; - jend = m.w - update.w/2; - } - for(i = istart; i < iend; i += stride){ - for(j = jstart; j < jend; j += stride){ - float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); - single_update(m, update, i, j, error); - } - } - /* - for(i = 0; i < update.h*update.w*update.c; ++i){ - update.data[i] /= (m.h/stride)*(m.w/stride); - } - */ -} - -void single_back_convolve(image m, image kernel, int x, int y, float val) -{ - int i, j, k; - for(i = 0; i < kernel.h; ++i){ - for(j = 0; j < kernel.w; ++j){ - for(k = 0; k < kernel.c; ++k){ - float pval = get_pixel(kernel, i, j, k) * val; - add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval); - } - } - } -} - -void back_convolve(image m, image kernel, int stride, int channel, image out, int edge) -{ - assert(m.c == kernel.c); - int i, j, istart, jstart, iend, jend; - if(edge){ - istart = jstart = 0; - iend = m.h; - jend = m.w; - }else{ - istart = kernel.h/2; - jstart = kernel.w/2; - iend = m.h-kernel.h/2; - jend = m.w - kernel.w/2; - } - for(i = istart; i < iend; i += stride){ - for(j = jstart; j < jend; j += stride){ - float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); - single_back_convolve(m, kernel, i, j, val); - } - } + assert(x < m.w && y < m.h && c < m.c); + m.data[c*m.h*m.w + y*m.w + x] = val; } void print_image(image m) @@ -730,20 +462,20 @@ image collapse_images_vert(image *ims, int n) c = 1; } - image filters = make_image(h,w,c); + image filters = make_image(w, h, c); int i,j; for(i = 0; i < n; ++i){ int h_offset = i*(ims[0].h+border); image copy = copy_image(ims[i]); //normalize_image(copy); if(c == 3 && color){ - embed_image(copy, filters, h_offset, 0); + embed_image(copy, filters, 0, h_offset); } else{ for(j = 0; j < copy.c; ++j){ int w_offset = j*(ims[0].w+border); image layer = get_image_layer(copy, j); - embed_image(layer, filters, h_offset, w_offset); + embed_image(layer, filters, w_offset, h_offset); free_image(layer); } } @@ -766,20 +498,20 @@ image collapse_images_horz(image *ims, int n) c = 1; } - image filters = make_image(h,w,c); + image filters = make_image(w, h, c); int i,j; for(i = 0; i < n; ++i){ int w_offset = i*(size+border); image copy = copy_image(ims[i]); //normalize_image(copy); if(c == 3 && color){ - embed_image(copy, filters, 0, w_offset); + embed_image(copy, filters, w_offset, 0); } else{ for(j = 0; j < copy.c; ++j){ int h_offset = j*(size+border); image layer = get_image_layer(copy, j); - embed_image(layer, filters, h_offset, w_offset); + embed_image(layer, filters, w_offset, h_offset); free_image(layer); } } @@ -796,43 +528,6 @@ void show_images(image *ims, int n, char *window) free_image(m); } -image grid_images(image **ims, int h, int w) -{ - int i; - image *rows = calloc(h, sizeof(image)); - for(i = 0; i < h; ++i){ - rows[i] = collapse_images_horz(ims[i], w); - } - image out = collapse_images_vert(rows, h); - for(i = 0; i < h; ++i){ - free_image(rows[i]); - } - free(rows); - return out; -} - -void test_grid() -{ - int i,j; - int num = 3; - int topk = 3; - image **vizs = calloc(num, sizeof(image*)); - for(i = 0; i < num; ++i){ - vizs[i] = calloc(topk, sizeof(image)); - for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3); - } - image grid = grid_images(vizs, num, topk); - save_image(grid, "Test Grid"); - free_image(grid); -} - -void show_images_grid(image **ims, int h, int w, char *window) -{ - image out = grid_images(ims, h, w); - show_image(out, window); - free_image(out); -} - void free_image(image m) { free(m.data); diff --git a/src/image.h b/src/image.h index 8b36c699..a0d1875e 100644 --- a/src/image.h +++ b/src/image.h @@ -12,61 +12,44 @@ typedef struct { } image; float get_color(int c, int x, int max); -void jitter_image(image a, int h, int w, int dh, int dw); void flip_image(image a); void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b); image image_distance(image a, image b); void scale_image(image m, float s); -image crop_image(image im, int dr, int dc, int h, int w); -image resize_image(image im, int h, int w); +image crop_image(image im, int dx, int dy, int w, int h); +image resize_image(image im, int w, int h); void translate_image(image m, float s); void normalize_image(image p); -void z_normalize_image(image p); -void threshold_image(image p, float t); -void zero_image(image m); void rotate_image(image m); -void subtract_image(image a, image b); -float avg_image_layer(image m, int l); -void embed_image(image source, image dest, int h, int w); -void add_into_image(image src, image dest, int h, int w); +void embed_image(image source, image dest, int dx, int dy); + image collapse_image_layers(image source, int border); image collapse_images_horz(image *ims, int n); image collapse_images_vert(image *ims, int n); -image get_sub_image(image m, int h, int w, int dh, int dw); void show_image(image p, char *name); void save_image(image p, char *name); void show_images(image *ims, int n, char *window); void show_image_layers(image p, char *name); void show_image_collapsed(image p, char *name); -void show_images_grid(image **ims, int h, int w, char *window); -void test_grid(); -image grid_images(image **ims, int h, int w); + void print_image(image m); -image make_image(int h, int w, int c); -image make_empty_image(int h, int w, int c); -image make_random_image(int h, int w, int c); -image make_random_kernel(int size, int c, float scale); -image float_to_image(int h, int w, int c, float *data); +image make_image(int w, int h, int c); +image make_empty_image(int w, int h, int c); +image float_to_image(int w, int h, int c, float *data); image copy_image(image p); -image load_image(char *filename, int h, int w); -image load_image_color(char *filename, int h, int w); +image load_image(char *filename, int w, int h); +image load_image_color(char *filename, int w, int h); + image ipl_to_image(IplImage* src); float get_pixel(image m, int x, int y, int c); float get_pixel_extend(image m, int x, int y, int c); -void add_pixel(image m, int x, int y, int c, float val); void set_pixel(image m, int x, int y, int c, float val); image get_image_layer(image m, int l); -void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge); -void upsample_image(image m, int stride, image out); -void convolve(image m, image kernel, int stride, int channel, image out, int edge); -void back_convolve(image m, image kernel, int stride, int channel, image out, int edge); -void kernel_update(image m, image update, int stride, int channel, image out, int edge); - void free_image(image m); void test_resize(char *filename); #endif diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c index 790cb287..76402fa7 100644 --- a/src/maxpool_layer.c +++ b/src/maxpool_layer.c @@ -7,7 +7,7 @@ image get_maxpool_image(maxpool_layer layer) int h = (layer.h-1)/layer.stride + 1; int w = (layer.w-1)/layer.stride + 1; int c = layer.c; - return float_to_image(h,w,c,layer.output); + return float_to_image(w,h,c,layer.output); } image get_maxpool_delta(maxpool_layer layer) @@ -15,7 +15,7 @@ image get_maxpool_delta(maxpool_layer layer) int h = (layer.h-1)/layer.stride + 1; int w = (layer.w-1)/layer.stride + 1; int c = layer.c; - return float_to_image(h,w,c,layer.delta); + return float_to_image(w,h,c,layer.delta); } maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride) diff --git a/src/normalization_layer.c b/src/normalization_layer.c index 3ab318b6..93c2ad94 100644 --- a/src/normalization_layer.c +++ b/src/normalization_layer.c @@ -6,7 +6,7 @@ image get_normalization_image(normalization_layer layer) int h = layer.h; int w = layer.w; int c = layer.c; - return float_to_image(h,w,c,layer.output); + return float_to_image(w,h,c,layer.output); } image get_normalization_delta(normalization_layer layer) @@ -14,7 +14,7 @@ image get_normalization_delta(normalization_layer layer) int h = layer.h; int w = layer.w; int c = layer.c; - return float_to_image(h,w,c,layer.delta); + return float_to_image(w,h,c,layer.delta); } normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa) diff --git a/src/parser.h b/src/parser.h index 2e8190e3..b16cc037 100644 --- a/src/parser.h +++ b/src/parser.h @@ -6,5 +6,6 @@ network parse_network_cfg(char *filename); void save_network(network net, char *filename); void save_weights(network net, char *filename); void load_weights(network *net, char *filename); +void load_weights_upto(network *net, char *filename, int cutoff); #endif