Added dice code

This commit is contained in:
Joseph Redmon 2015-08-13 16:02:22 -07:00
parent eb98da5000
commit 5635523326
5 changed files with 146 additions and 4 deletions

View File

@ -1,5 +1,5 @@
GPU=0 GPU=1
OPENCV=0 OPENCV=1
DEBUG=0 DEBUG=0
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
@ -34,7 +34,7 @@ CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o
ifeq ($(GPU), 1) ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif endif

20
scripts/dice_label.sh Normal file
View File

@ -0,0 +1,20 @@
mkdir -p images
mkdir -p images/orig
mkdir -p images/train
mkdir -p images/val
ffmpeg -i Face1.mp4 images/orig/face1_%6d.jpg
ffmpeg -i Face2.mp4 images/orig/face2_%6d.jpg
ffmpeg -i Face3.mp4 images/orig/face3_%6d.jpg
ffmpeg -i Face4.mp4 images/orig/face4_%6d.jpg
ffmpeg -i Face5.mp4 images/orig/face5_%6d.jpg
ffmpeg -i Face6.mp4 images/orig/face6_%6d.jpg
mogrify -resize 100x100^ -gravity center -crop 100x100+0+0 +repage images/orig/*
ls images/orig/* | shuf | head -n 1000 | xargs mv -t images/val
mv images/orig/* images/train
find `pwd`/images/train > dice.train.list -name \*.jpg
find `pwd`/images/val > dice.val.list -name \*.jpg

View File

@ -15,6 +15,7 @@ extern void run_coco(int argc, char **argv);
extern void run_writing(int argc, char **argv); extern void run_writing(int argc, char **argv);
extern void run_captcha(int argc, char **argv); extern void run_captcha(int argc, char **argv);
extern void run_nightmare(int argc, char **argv); extern void run_nightmare(int argc, char **argv);
extern void run_dice(int argc, char **argv);
void change_rate(char *filename, float scale, float add) void change_rate(char *filename, float scale, float add)
{ {
@ -115,6 +116,8 @@ int main(int argc, char **argv)
run_detection(argc, argv); run_detection(argc, argv);
} else if (0 == strcmp(argv[1], "coco")){ } else if (0 == strcmp(argv[1], "coco")){
run_coco(argc, argv); run_coco(argc, argv);
} else if (0 == strcmp(argv[1], "dice")){
run_dice(argc, argv);
} else if (0 == strcmp(argv[1], "writing")){ } else if (0 == strcmp(argv[1], "writing")){
run_writing(argc, argv); run_writing(argc, argv);
} else if (0 == strcmp(argv[1], "test")){ } else if (0 == strcmp(argv[1], "test")){

118
src/dice.c Normal file
View File

@ -0,0 +1,118 @@
#include "network.h"
#include "utils.h"
#include "parser.h"
char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"};
void train_dice(char *cfgfile, char *weightfile)
{
data_seed = time(0);
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
char *backup_directory = "/home/pjreddie/backup/";
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
char **labels = dice_labels;
list *plist = get_paths("data/dice/dice.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
while(1){
++i;
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 6, net.w, net.h);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if((i % 100) == 0) net.learning_rate *= .1;
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i);
save_weights(net, buff);
}
}
}
void validate_dice(char *filename, char *weightfile)
{
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
char **labels = dice_labels;
list *plist = get_paths("data/dice/dice.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
data val = load_data(paths, m, 0, labels, 6, net.w, net.h);
float *acc = network_accuracies(net, val);
printf("Validation Accuracy: %f, %d images\n", acc[0], m);
free_data(val);
}
void test_dice(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char **names = dice_labels;
char input[256];
int indexes[6];
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
fgets(input, 256, stdin);
strtok(input, "\n");
}
image im = load_image_color(input, net.w, net.h);
float *X = im.data;
float *predictions = network_predict(net, X);
top_predictions(net, 6, indexes);
for(i = 0; i < 6; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
if (filename) break;
}
}
void run_dice(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights);
}

View File

@ -8,6 +8,7 @@ void train_imagenet(char *cfgfile, char *weightfile)
srand(time(0)); srand(time(0));
float avg_loss = -1; float avg_loss = -1;
char *base = basecfg(cfgfile); char *base = basecfg(cfgfile);
char *backup_directory = "/home/pjreddie/backup/";
printf("%s\n", base); printf("%s\n", base);
network net = parse_network_cfg(cfgfile); network net = parse_network_cfg(cfgfile);
if(weightfile){ if(weightfile){
@ -50,7 +51,7 @@ void train_imagenet(char *cfgfile, char *weightfile)
if((i % 30000) == 0) net.learning_rate *= .1; if((i % 30000) == 0) net.learning_rate *= .1;
if(i%1000==0){ if(i%1000==0){
char buff[256]; char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i);
save_weights(net, buff); save_weights(net, buff);
} }
} }