mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
stuff changed probably
This commit is contained in:
parent
7100de0b59
commit
56b6561ae4
12
src/data.c
12
src/data.c
@ -137,18 +137,20 @@ void fill_truth_detection(char *path, float *truth, int classes, int height, int
|
|||||||
if(j < 0) j = 0;
|
if(j < 0) j = 0;
|
||||||
if(j >= num_height) j = num_height-1;
|
if(j >= num_height) j = num_height-1;
|
||||||
|
|
||||||
float dw = (x - i*box_width)/box_width;
|
float dw = constrain(0,1, (x - i*box_width)/box_width );
|
||||||
float dh = (y - j*box_height)/box_height;
|
float dh = constrain(0,1, (y - j*box_height)/box_height );
|
||||||
|
float th = constrain(0,1, h*(height+jitter)/height );
|
||||||
|
float tw = constrain(0,1, w*(width+jitter)/width );
|
||||||
|
|
||||||
int index = (i+j*num_width)*(4+classes+background);
|
int index = (i+j*num_width)*(4+classes+background);
|
||||||
if(truth[index+classes+background]) continue;
|
if(truth[index+classes+background+2]) continue;
|
||||||
if(background) truth[index++] = 0;
|
if(background) truth[index++] = 0;
|
||||||
truth[index+id] = 1;
|
truth[index+id] = 1;
|
||||||
index += classes;
|
index += classes;
|
||||||
truth[index++] = dh;
|
truth[index++] = dh;
|
||||||
truth[index++] = dw;
|
truth[index++] = dw;
|
||||||
truth[index++] = h*(height+jitter)/height;
|
truth[index++] = th;
|
||||||
truth[index++] = w*(width+jitter)/width;
|
truth[index++] = tw;
|
||||||
}
|
}
|
||||||
free(boxes);
|
free(boxes);
|
||||||
}
|
}
|
||||||
|
@ -50,7 +50,7 @@ void train_detection(char *cfgfile, char *weightfile)
|
|||||||
if(weightfile){
|
if(weightfile){
|
||||||
load_weights(&net, weightfile);
|
load_weights(&net, weightfile);
|
||||||
}
|
}
|
||||||
net.seen = 0;
|
//net.seen = 0;
|
||||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||||
int imgs = 128;
|
int imgs = 128;
|
||||||
srand(time(0));
|
srand(time(0));
|
||||||
@ -63,7 +63,7 @@ void train_detection(char *cfgfile, char *weightfile)
|
|||||||
int im_dim = 512;
|
int im_dim = 512;
|
||||||
int jitter = 64;
|
int jitter = 64;
|
||||||
int classes = 20;
|
int classes = 20;
|
||||||
int background = 0;
|
int background = 1;
|
||||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
|
||||||
clock_t time;
|
clock_t time;
|
||||||
while(1){
|
while(1){
|
||||||
@ -109,8 +109,9 @@ void validate_detection(char *cfgfile, char *weightfile)
|
|||||||
char **paths = (char **)list_to_array(plist);
|
char **paths = (char **)list_to_array(plist);
|
||||||
int im_size = 448;
|
int im_size = 448;
|
||||||
int classes = 20;
|
int classes = 20;
|
||||||
int background = 0;
|
int background = 1;
|
||||||
int num_output = 7*7*(4+classes+background);
|
int nuisance = 0;
|
||||||
|
int num_output = 7*7*(4+classes+background+nuisance);
|
||||||
|
|
||||||
int m = plist->size;
|
int m = plist->size;
|
||||||
int i = 0;
|
int i = 0;
|
||||||
@ -134,17 +135,19 @@ void validate_detection(char *cfgfile, char *weightfile)
|
|||||||
matrix pred = network_predict_data(net, val);
|
matrix pred = network_predict_data(net, val);
|
||||||
int j, k, class;
|
int j, k, class;
|
||||||
for(j = 0; j < pred.rows; ++j){
|
for(j = 0; j < pred.rows; ++j){
|
||||||
for(k = 0; k < pred.cols; k += classes+4+background){
|
for(k = 0; k < pred.cols; k += classes+4+background+nuisance){
|
||||||
|
float scale = 1.;
|
||||||
|
if(nuisance) scale = pred.vals[j][k];
|
||||||
for(class = 0; class < classes; ++class){
|
for(class = 0; class < classes; ++class){
|
||||||
int index = (k)/(classes+4+background);
|
int index = (k)/(classes+4+background+nuisance);
|
||||||
int r = index/7;
|
int r = index/7;
|
||||||
int c = index%7;
|
int c = index%7;
|
||||||
int ci = k+classes+background;
|
int ci = k+classes+background+nuisance;
|
||||||
float y = (r + pred.vals[j][ci + 0])/7.;
|
float y = (r + pred.vals[j][ci + 0])/7.;
|
||||||
float x = (c + pred.vals[j][ci + 1])/7.;
|
float x = (c + pred.vals[j][ci + 1])/7.;
|
||||||
float h = pred.vals[j][ci + 2];
|
float h = pred.vals[j][ci + 2];
|
||||||
float w = pred.vals[j][ci + 3];
|
float w = pred.vals[j][ci + 3];
|
||||||
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class+background], y, x, h, w);
|
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -16,7 +16,7 @@ int get_detection_layer_output_size(detection_layer layer)
|
|||||||
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
|
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
|
||||||
}
|
}
|
||||||
|
|
||||||
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background)
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
|
||||||
{
|
{
|
||||||
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
||||||
|
|
||||||
@ -25,6 +25,7 @@ detection_layer *make_detection_layer(int batch, int inputs, int classes, int co
|
|||||||
layer->classes = classes;
|
layer->classes = classes;
|
||||||
layer->coords = coords;
|
layer->coords = coords;
|
||||||
layer->rescore = rescore;
|
layer->rescore = rescore;
|
||||||
|
layer->nuisance = nuisance;
|
||||||
layer->background = background;
|
layer->background = background;
|
||||||
int outputs = get_detection_layer_output_size(*layer);
|
int outputs = get_detection_layer_output_size(*layer);
|
||||||
layer->output = calloc(batch*outputs, sizeof(float));
|
layer->output = calloc(batch*outputs, sizeof(float));
|
||||||
@ -72,12 +73,18 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
|||||||
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
|
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
|
||||||
float scale = 1;
|
float scale = 1;
|
||||||
if(layer.rescore) scale = state.input[in_i++];
|
if(layer.rescore) scale = state.input[in_i++];
|
||||||
if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
|
else if(layer.nuisance){
|
||||||
|
layer.output[out_i++] = 1-state.input[in_i++];
|
||||||
|
scale = mask;
|
||||||
|
}
|
||||||
|
else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
|
||||||
|
|
||||||
for(j = 0; j < layer.classes; ++j){
|
for(j = 0; j < layer.classes; ++j){
|
||||||
layer.output[out_i++] = scale*state.input[in_i++];
|
layer.output[out_i++] = scale*state.input[in_i++];
|
||||||
}
|
}
|
||||||
if(layer.background){
|
if(layer.nuisance){
|
||||||
|
|
||||||
|
}else if(layer.background){
|
||||||
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
|
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
|
||||||
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
||||||
}
|
}
|
||||||
@ -85,6 +92,7 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
|||||||
layer.output[out_i++] = mask*state.input[in_i++];
|
layer.output[out_i++] = mask*state.input[in_i++];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
/*
|
||||||
if(layer.background || 1){
|
if(layer.background || 1){
|
||||||
for(i = 0; i < layer.batch*locations; ++i){
|
for(i = 0; i < layer.batch*locations; ++i){
|
||||||
int index = i*(layer.classes+layer.coords+layer.background);
|
int index = i*(layer.classes+layer.coords+layer.background);
|
||||||
@ -95,6 +103,7 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
}
|
}
|
||||||
|
|
||||||
void backward_detection_layer(const detection_layer layer, network_state state)
|
void backward_detection_layer(const detection_layer layer, network_state state)
|
||||||
@ -107,13 +116,15 @@ void backward_detection_layer(const detection_layer layer, network_state state)
|
|||||||
float scale = 1;
|
float scale = 1;
|
||||||
float latent_delta = 0;
|
float latent_delta = 0;
|
||||||
if(layer.rescore) scale = state.input[in_i++];
|
if(layer.rescore) scale = state.input[in_i++];
|
||||||
if(layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
|
else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
|
||||||
|
else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
|
||||||
for(j = 0; j < layer.classes; ++j){
|
for(j = 0; j < layer.classes; ++j){
|
||||||
latent_delta += state.input[in_i]*layer.delta[out_i];
|
latent_delta += state.input[in_i]*layer.delta[out_i];
|
||||||
state.delta[in_i++] = scale*layer.delta[out_i++];
|
state.delta[in_i++] = scale*layer.delta[out_i++];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
if (layer.nuisance) ;
|
||||||
|
else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
||||||
for(j = 0; j < layer.coords; ++j){
|
for(j = 0; j < layer.coords; ++j){
|
||||||
state.delta[in_i++] = layer.delta[out_i++];
|
state.delta[in_i++] = layer.delta[out_i++];
|
||||||
}
|
}
|
||||||
|
@ -10,6 +10,7 @@ typedef struct {
|
|||||||
int coords;
|
int coords;
|
||||||
int background;
|
int background;
|
||||||
int rescore;
|
int rescore;
|
||||||
|
int nuisance;
|
||||||
float *output;
|
float *output;
|
||||||
float *delta;
|
float *delta;
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
@ -18,7 +19,7 @@ typedef struct {
|
|||||||
#endif
|
#endif
|
||||||
} detection_layer;
|
} detection_layer;
|
||||||
|
|
||||||
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background);
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance);
|
||||||
void forward_detection_layer(const detection_layer layer, network_state state);
|
void forward_detection_layer(const detection_layer layer, network_state state);
|
||||||
void backward_detection_layer(const detection_layer layer, network_state state);
|
void backward_detection_layer(const detection_layer layer, network_state state);
|
||||||
int get_detection_layer_output_size(detection_layer layer);
|
int get_detection_layer_output_size(detection_layer layer);
|
||||||
|
@ -165,8 +165,9 @@ detection_layer *parse_detection(list *options, size_params params)
|
|||||||
int coords = option_find_int(options, "coords", 1);
|
int coords = option_find_int(options, "coords", 1);
|
||||||
int classes = option_find_int(options, "classes", 1);
|
int classes = option_find_int(options, "classes", 1);
|
||||||
int rescore = option_find_int(options, "rescore", 1);
|
int rescore = option_find_int(options, "rescore", 1);
|
||||||
|
int nuisance = option_find_int(options, "nuisance", 0);
|
||||||
int background = option_find_int(options, "background", 1);
|
int background = option_find_int(options, "background", 1);
|
||||||
detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background);
|
detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
|
||||||
option_unused(options);
|
option_unused(options);
|
||||||
return layer;
|
return layer;
|
||||||
}
|
}
|
||||||
@ -550,7 +551,7 @@ void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
|||||||
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
||||||
{
|
{
|
||||||
fprintf(fp, "[detection]\n");
|
fprintf(fp, "[detection]\n");
|
||||||
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore);
|
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
|
||||||
fprintf(fp, "\n");
|
fprintf(fp, "\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -276,10 +276,10 @@ float variance_array(float *a, int n)
|
|||||||
return variance;
|
return variance;
|
||||||
}
|
}
|
||||||
|
|
||||||
float constrain(float a, float max)
|
float constrain(float min, float max, float a)
|
||||||
{
|
{
|
||||||
if(a > abs(max)) return abs(max);
|
if (a < min) return min;
|
||||||
if(a < -abs(max)) return -abs(max);
|
if (a > max) return max;
|
||||||
return a;
|
return a;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -26,7 +26,7 @@ void normalize_array(float *a, int n);
|
|||||||
void scale_array(float *a, int n, float s);
|
void scale_array(float *a, int n, float s);
|
||||||
void translate_array(float *a, int n, float s);
|
void translate_array(float *a, int n, float s);
|
||||||
int max_index(float *a, int n);
|
int max_index(float *a, int n);
|
||||||
float constrain(float a, float max);
|
float constrain(float min, float max, float a);
|
||||||
float mse_array(float *a, int n);
|
float mse_array(float *a, int n);
|
||||||
float rand_normal();
|
float rand_normal();
|
||||||
float rand_uniform();
|
float rand_uniform();
|
||||||
|
Loading…
Reference in New Issue
Block a user