mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
writing stuff
This commit is contained in:
parent
fed6d6e31d
commit
59e356730f
49
cfg/writing.cfg
Normal file
49
cfg/writing.cfg
Normal file
@ -0,0 +1,49 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=1
|
||||
height=256
|
||||
width=256
|
||||
channels=3
|
||||
learning_rate=0.00001
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen=0
|
||||
|
||||
[crop]
|
||||
crop_height=256
|
||||
crop_width=256
|
||||
flip=0
|
||||
angle=0
|
||||
saturation=1
|
||||
exposure=1
|
||||
|
||||
[convolutional]
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=1
|
||||
size=5
|
||||
stride=1
|
||||
pad=1
|
||||
activation=logistic
|
||||
|
||||
[cost]
|
||||
|
11
src/data.c
11
src/data.c
@ -54,7 +54,12 @@ matrix load_image_paths_gray(char **paths, int n, int w, int h)
|
||||
X.cols = 0;
|
||||
|
||||
for(i = 0; i < n; ++i){
|
||||
image im = load_image(paths[i], w, h, 1);
|
||||
image im = load_image(paths[i], w, h, 3);
|
||||
|
||||
image gray = grayscale_image(im);
|
||||
free_image(im);
|
||||
im = gray;
|
||||
|
||||
X.vals[i] = im.data;
|
||||
X.cols = im.h*im.w*im.c;
|
||||
}
|
||||
@ -571,14 +576,14 @@ pthread_t load_data_in_thread(load_args args)
|
||||
return thread;
|
||||
}
|
||||
|
||||
data load_data_writing(char **paths, int n, int m, int w, int h)
|
||||
data load_data_writing(char **paths, int n, int m, int w, int h, int downsample)
|
||||
{
|
||||
if(m) paths = get_random_paths(paths, n, m);
|
||||
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png");
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, w, h);
|
||||
d.y = load_image_paths_gray(replace_paths, n, w/8, h/8);
|
||||
d.y = load_image_paths_gray(replace_paths, n, w/downsample, h/downsample);
|
||||
if(m) free(paths);
|
||||
int i;
|
||||
for(i = 0; i < n; ++i) free(replace_paths[i]);
|
||||
|
@ -68,7 +68,7 @@ box_label *read_boxes(char *filename, int *n);
|
||||
data load_cifar10_data(char *filename);
|
||||
data load_all_cifar10();
|
||||
|
||||
data load_data_writing(char **paths, int n, int m, int w, int h);
|
||||
data load_data_writing(char **paths, int n, int m, int w, int h, int downsample);
|
||||
|
||||
list *get_paths(char *filename);
|
||||
char **get_labels(char *filename);
|
||||
|
1138
src/image.c
1138
src/image.c
File diff suppressed because it is too large
Load Diff
@ -61,6 +61,7 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
if(state.train){
|
||||
float avg_iou = 0;
|
||||
float avg_cat = 0;
|
||||
float avg_allcat = 0;
|
||||
float avg_obj = 0;
|
||||
float avg_anyobj = 0;
|
||||
int count = 0;
|
||||
@ -90,6 +91,7 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
|
||||
*(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
|
||||
if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
|
||||
avg_allcat += l.output[class_index+j];
|
||||
}
|
||||
|
||||
box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
|
||||
@ -151,7 +153,7 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
LOGISTIC, l.delta + index + locations*l.classes);
|
||||
}
|
||||
}
|
||||
printf("Region Avg IOU: %f, Avg Cat Pred: %f, Avg Obj: %f, Avg Any: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
|
||||
printf("Region Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
|
||||
}
|
||||
}
|
||||
|
||||
|
19
src/swag.c
19
src/swag.c
@ -132,21 +132,22 @@ void train_swag(char *cfgfile, char *weightfile)
|
||||
void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes)
|
||||
{
|
||||
int i,j,n;
|
||||
int per_cell = 5*num+classes;
|
||||
//int per_cell = 5*num+classes;
|
||||
for (i = 0; i < side*side; ++i){
|
||||
int row = i / side;
|
||||
int col = i % side;
|
||||
for(n = 0; n < num; ++n){
|
||||
int offset = i*per_cell + 5*n;
|
||||
float scale = predictions[offset];
|
||||
int index = i*num + n;
|
||||
boxes[index].x = (predictions[offset + 1] + col) / side * w;
|
||||
boxes[index].y = (predictions[offset + 2] + row) / side * h;
|
||||
boxes[index].w = pow(predictions[offset + 3], (square?2:1)) * w;
|
||||
boxes[index].h = pow(predictions[offset + 4], (square?2:1)) * h;
|
||||
int p_index = side*side*classes + i*num + n;
|
||||
float scale = predictions[p_index];
|
||||
int box_index = side*side*(classes + num) + (i*num + n)*4;
|
||||
boxes[index].x = (predictions[box_index + 0] + col) / side * w;
|
||||
boxes[index].y = (predictions[box_index + 1] + row) / side * h;
|
||||
boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
|
||||
boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
|
||||
for(j = 0; j < classes; ++j){
|
||||
offset = i*per_cell + 5*num;
|
||||
float prob = scale*predictions[offset+j];
|
||||
int class_index = i*classes;
|
||||
float prob = scale*predictions[class_index+j];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
}
|
||||
|
@ -2,8 +2,13 @@
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
|
||||
void train_writing(char *cfgfile, char *weightfile)
|
||||
{
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
data_seed = time(0);
|
||||
srand(time(0));
|
||||
float avg_loss = -1;
|
||||
@ -23,41 +28,78 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
while(1){
|
||||
++i;
|
||||
time=clock();
|
||||
data train = load_data_writing(paths, imgs, plist->size, 512, 512);
|
||||
data train = load_data_writing(paths, imgs, plist->size, 256, 256, 1);
|
||||
printf("Loaded %lf seconds\n",sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
#ifdef GPU
|
||||
float *out = get_network_output_gpu(net);
|
||||
#else
|
||||
float *out = get_network_output(net);
|
||||
#endif
|
||||
|
||||
/*
|
||||
image pred = float_to_image(64, 64, 1, out);
|
||||
print_image(pred);
|
||||
|
||||
/*
|
||||
image im = float_to_image(256, 256, 3, train.X.vals[0]);
|
||||
image lab = float_to_image(64, 64, 1, train.y.vals[0]);
|
||||
image pred = float_to_image(64, 64, 1, out);
|
||||
show_image(im, "image");
|
||||
show_image(lab, "label");
|
||||
print_image(lab);
|
||||
show_image(pred, "pred");
|
||||
cvWaitKey(0);
|
||||
*/
|
||||
|
||||
/*
|
||||
image im = float_to_image(256, 256, 3, train.X.vals[0]);
|
||||
image lab = float_to_image(64, 64, 1, train.y.vals[0]);
|
||||
image pred = float_to_image(64, 64, 1, out);
|
||||
show_image(im, "image");
|
||||
show_image(lab, "label");
|
||||
print_image(lab);
|
||||
show_image(pred, "pred");
|
||||
cvWaitKey(0);
|
||||
*/
|
||||
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if((i % 20000) == 0) net.learning_rate *= .1;
|
||||
//if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97;
|
||||
if(i%1000==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_writing(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
char filename[256];
|
||||
|
||||
fgets(filename, 256, stdin);
|
||||
strtok(filename, "\n");
|
||||
image im = load_image_color(filename, 0, 0);
|
||||
//image im = load_image_color("/home/pjreddie/darknet/data/figs/C02-1001-Figure-1.png", 0, 0);
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
printf("%d %d %d\n", im.h, im.w, im.c);
|
||||
float *X = sized.data;
|
||||
time=clock();
|
||||
network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
|
||||
image pred = get_network_image(net);
|
||||
|
||||
if (outfile) {
|
||||
printf("Save image as %s.png (shape: %d %d)\n", outfile, pred.w, pred.h);
|
||||
save_image(pred, outfile);
|
||||
} else {
|
||||
show_image(pred, "prediction");
|
||||
#ifdef OPENCV
|
||||
cvWaitKey(0);
|
||||
cvDestroyAllWindows();
|
||||
#endif
|
||||
}
|
||||
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
}
|
||||
|
||||
void run_writing(int argc, char **argv)
|
||||
{
|
||||
if(argc < 4){
|
||||
@ -67,6 +109,8 @@ void run_writing(int argc, char **argv)
|
||||
|
||||
char *cfg = argv[3];
|
||||
char *weights = (argc > 4) ? argv[4] : 0;
|
||||
char *outfile = (argc > 5) ? argv[5] : 0;
|
||||
if(0==strcmp(argv[2], "train")) train_writing(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, outfile);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user