mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
captcha stuff
This commit is contained in:
@ -5,16 +5,18 @@
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
softmax_layer *make_softmax_layer(int batch, int inputs)
|
||||
softmax_layer *make_softmax_layer(int batch, int groups, int inputs)
|
||||
{
|
||||
assert(inputs%groups == 0);
|
||||
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
|
||||
softmax_layer *layer = calloc(1, sizeof(softmax_layer));
|
||||
layer->batch = batch;
|
||||
layer->groups = groups;
|
||||
layer->inputs = inputs;
|
||||
layer->output = calloc(inputs*batch, sizeof(float));
|
||||
layer->delta = calloc(inputs*batch, sizeof(float));
|
||||
layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
|
||||
@ -22,23 +24,31 @@ softmax_layer *make_softmax_layer(int batch, int inputs)
|
||||
return layer;
|
||||
}
|
||||
|
||||
void softmax_array(float *input, int n, float *output)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = -FLT_MAX;
|
||||
for(i = 0; i < n; ++i){
|
||||
if(input[i] > largest) largest = input[i];
|
||||
}
|
||||
for(i = 0; i < n; ++i){
|
||||
sum += exp(input[i]-largest);
|
||||
}
|
||||
if(sum) sum = largest+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < n; ++i){
|
||||
output[i] = exp(input[i]-sum);
|
||||
}
|
||||
}
|
||||
|
||||
void forward_softmax_layer(const softmax_layer layer, float *input)
|
||||
{
|
||||
int i,b;
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
float sum = 0;
|
||||
float largest = -FLT_MAX;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
|
||||
}
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
sum += exp(input[i+b*layer.inputs]-largest);
|
||||
}
|
||||
if(sum) sum = largest+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum);
|
||||
}
|
||||
int b;
|
||||
int inputs = layer.inputs / layer.groups;
|
||||
int batch = layer.batch * layer.groups;
|
||||
for(b = 0; b < batch; ++b){
|
||||
softmax_array(input+b*inputs, inputs, layer.output+b*inputs);
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user