mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Minor performance improvement
This commit is contained in:
@ -27,7 +27,7 @@ __global__ void binarize_kernel(float *x, int n, float *binary)
|
||||
void binarize_gpu(float *x, int n, float *binary)
|
||||
{
|
||||
binarize_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(x, n, binary);
|
||||
check_error(cudaPeekAtLastError());
|
||||
CHECK_CUDA(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
|
||||
@ -48,7 +48,7 @@ __global__ void binarize_input_kernel(float *input, int n, int size, float *bina
|
||||
void binarize_input_gpu(float *input, int n, int size, float *binary)
|
||||
{
|
||||
binarize_input_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >>>(input, n, size, binary);
|
||||
check_error(cudaPeekAtLastError());
|
||||
CHECK_CUDA(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
|
||||
@ -70,7 +70,7 @@ __global__ void binarize_weights_kernel(float *weights, int n, int size, float *
|
||||
void binarize_weights_gpu(float *weights, int n, int size, float *binary)
|
||||
{
|
||||
binarize_weights_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(weights, n, size, binary);
|
||||
check_error(cudaPeekAtLastError());
|
||||
CHECK_CUDA(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
#define WARP_SIZE 32
|
||||
@ -121,7 +121,7 @@ void fast_binarize_weights_gpu(float *weights, int n, int size, float *binary, f
|
||||
set_zero_kernel << <(n/BLOCK + 1), BLOCK, 0, get_cuda_stream() >> > (mean_arr_gpu, n);
|
||||
reduce_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, mean_arr_gpu);
|
||||
binarize_weights_mean_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, binary, mean_arr_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
CHECK_CUDA(cudaPeekAtLastError());
|
||||
}
|
||||
else {
|
||||
binarize_weights_gpu(weights, n, size, binary);
|
||||
@ -140,6 +140,7 @@ __global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
|
||||
|
||||
void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) {
|
||||
cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16);
|
||||
CHECK_CUDA(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
|
||||
@ -151,6 +152,7 @@ __global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
|
||||
|
||||
void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) {
|
||||
cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32);
|
||||
CHECK_CUDA(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
half *cuda_make_f16_from_f32_array(float *src, size_t n)
|
||||
@ -465,7 +467,8 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
if (state.train) // Training
|
||||
{
|
||||
copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
|
||||
simple_copy_ongpu(l.outputs*l.batch / 2, output16, l.x_gpu);
|
||||
//copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
|
||||
//cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
|
||||
float one = 1;
|
||||
float zero = 0;
|
||||
@ -645,7 +648,9 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
.00001,
|
||||
l.mean_gpu, // input (should be FP32)
|
||||
l.variance_gpu)); // input (should be FP32)
|
||||
copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
|
||||
|
||||
simple_copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, delta16);
|
||||
//copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
|
||||
//cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
|
||||
}
|
||||
else
|
||||
@ -789,19 +794,20 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
|
||||
void pull_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
|
||||
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
||||
cuda_pull_array_async(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array_async(layer.biases_gpu, layer.biases, layer.n);
|
||||
cuda_pull_array_async(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array_async(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
||||
if (layer.batch_normalize){
|
||||
cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
|
||||
cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
||||
cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
||||
cuda_pull_array_async(layer.scales_gpu, layer.scales, layer.n);
|
||||
cuda_pull_array_async(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
||||
cuda_pull_array_async(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
||||
}
|
||||
if (layer.adam){
|
||||
cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array_async(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array_async(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
|
||||
}
|
||||
cudaStreamSynchronize(get_cuda_stream());
|
||||
}
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer)
|
||||
|
Reference in New Issue
Block a user