LSTM, RNN, GRU - use connected_layer that uses cuDNN. Fixed CRNN for conv-layer with cuDNN.

This commit is contained in:
AlexeyAB
2019-01-28 23:50:51 +03:00
parent 0e1f3eaf35
commit 640bdbc063
13 changed files with 292 additions and 101 deletions

View File

@ -444,7 +444,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
cuda_convert_f32_to_f16(state.input, input16_size, input16);
//fill_ongpu(output16_size / 2, 0, (float *)output16, 1);
cudnnConvolutionForward(cudnn_handle(),
CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(),
&alpha,
l.srcTensorDesc16,
input16,
@ -456,7 +456,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
l.workspace_size,
&beta,
l.dstTensorDesc16,
output16);
output16));
if (l.batch_normalize)
@ -469,7 +469,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
float zero = 0;
// Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
// compared to FP32, it<69>s just that the statistics and value adjustment should be done in FP32.
cudnnBatchNormalizationForwardTraining(cudnn_handle(),
CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
@ -485,7 +485,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
l.rolling_variance_gpu, // output (should be FP32)
.00001,
l.mean_gpu, // output (should be FP32)
l.variance_gpu); // output (should be FP32)
l.variance_gpu)); // output (should be FP32)
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
//forward_batchnorm_layer_gpu(l, state);
@ -508,7 +508,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
//#else
cudnnConvolutionForward(cudnn_handle(),
CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(),
&alpha, //&one,
l.srcTensorDesc,
state.input,
@ -520,7 +520,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
l.workspace_size,
&beta, //&one,
l.dstTensorDesc,
l.output_gpu);
l.output_gpu));
//cudaDeviceSynchronize();
if (l.batch_normalize) {
@ -624,7 +624,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
//}
float one = 1;
float zero = 0;
cudnnBatchNormalizationBackward(cudnn_handle(),
CHECK_CUDNN(cudnnBatchNormalizationBackward(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
@ -642,7 +642,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
l.bias_updates_gpu, // output (should be FP32)
.00001,
l.mean_gpu, // input (should be FP32)
l.variance_gpu); // input (should be FP32)
l.variance_gpu)); // input (should be FP32)
copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
//cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
}
@ -659,7 +659,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
// so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m
cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16);
cudnnConvolutionBackwardFilter(cudnn_handle(),
CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(),
&one,
l.srcTensorDesc16,
input16, //state.input,
@ -671,7 +671,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
l.workspace_size,
&one,
l.dweightDesc16,
l.weight_updates_gpu16); // l.weight_updates_gpu);
l.weight_updates_gpu16)); // l.weight_updates_gpu);
cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu);
@ -682,7 +682,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
// calculate delta for the next layer
// convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16
// get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16)
cudnnConvolutionBackwardData(cudnn_handle(),
CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(),
&alpha,
l.weightDesc16,
l.weights_gpu16, //l.weights_gpu,
@ -694,7 +694,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
l.workspace_size,
&beta,
l.dsrcTensorDesc16,
input16); // state.delta);
input16)); // state.delta);
cuda_convert_f16_to_f32(input16, input16_size, state.delta);
@ -711,7 +711,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
// calculate conv weight updates
// if used: beta=1 then loss decreases faster
cudnnConvolutionBackwardFilter(cudnn_handle(),
CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(),
&one,
l.srcTensorDesc,
state.input,
@ -723,13 +723,13 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
l.workspace_size,
&one,
l.dweightDesc,
l.weight_updates_gpu);
l.weight_updates_gpu));
if (state.delta) {
if (l.binary || l.xnor) swap_binary(&l);
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
// calculate delta for the next layer
cudnnConvolutionBackwardData(cudnn_handle(),
CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(),
&one,
l.weightDesc,
l.weights_gpu,
@ -741,7 +741,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
l.workspace_size,
&one,
l.dsrcTensorDesc,
state.delta);
state.delta));
if (l.binary || l.xnor) swap_binary(&l);
if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
}