mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
LSTM, RNN, GRU - use connected_layer that uses cuDNN. Fixed CRNN for conv-layer with cuDNN.
This commit is contained in:
@ -48,18 +48,21 @@ layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int ou
|
||||
|
||||
l.input_layer = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.input_layer) = make_convolutional_layer(batch*steps, h, w, c, hidden_filters, 3, 1, 1, activation, batch_normalize, 0, 0, 0, 0, 0);
|
||||
*(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, 3, 1, 1, activation, batch_normalize, 0, 0, 0, 0, 0);
|
||||
l.input_layer->batch = batch;
|
||||
if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size;
|
||||
|
||||
l.self_layer = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.self_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, hidden_filters, 3, 1, 1, activation, batch_normalize, 0, 0, 0, 0, 0);
|
||||
*(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, 3, 1, 1, activation, batch_normalize, 0, 0, 0, 0, 0);
|
||||
l.self_layer->batch = batch;
|
||||
if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size;
|
||||
|
||||
l.output_layer = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.output_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, output_filters, 3, 1, 1, activation, batch_normalize, 0, 0, 0, 0, 0);
|
||||
*(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, 3, 1, 1, activation, batch_normalize, 0, 0, 0, 0, 0);
|
||||
l.output_layer->batch = batch;
|
||||
if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size;
|
||||
|
||||
l.output = l.output_layer->output;
|
||||
l.delta = l.output_layer->delta;
|
||||
@ -92,6 +95,7 @@ void forward_crnn_layer(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
s.workspace = state.workspace;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
@ -133,6 +137,7 @@ void backward_crnn_layer(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
s.workspace = state.workspace;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
@ -206,6 +211,7 @@ void forward_crnn_layer_gpu(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
s.workspace = state.workspace;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
@ -247,6 +253,7 @@ void backward_crnn_layer_gpu(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
s.workspace = state.workspace;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
|
Reference in New Issue
Block a user