adding new tiny-yolo

This commit is contained in:
Joseph Redmon 2016-09-07 22:27:56 -07:00
parent b8eb8b0a40
commit 6b38dcdce0
17 changed files with 132 additions and 64 deletions

View File

@ -1,27 +1,24 @@
[net] [net]
batch=64 batch=64
subdivisions=64 subdivisions=2
height=448 height=448
width=448 width=448
channels=3 channels=3
momentum=0.9 momentum=0.9
decay=0.0005 decay=0.0005
learning_rate=0.0001 saturation=.75
exposure=.75
hue = .1
learning_rate=0.0005
policy=steps policy=steps
steps=20,40,60,80,20000,30000 steps=200,400,600,800,20000,30000
scales=5,5,2,2,.1,.1 scales=2.5,2,2,2,.1,.1
max_batches = 40000 max_batches = 40000
[crop]
crop_width=448
crop_height=448
flip=0
angle=0
saturation = 1.5
exposure = 1.5
[convolutional] [convolutional]
batch_normalize=1
filters=16 filters=16
size=3 size=3
stride=1 stride=1
@ -33,6 +30,7 @@ size=2
stride=2 stride=2
[convolutional] [convolutional]
batch_normalize=1
filters=32 filters=32
size=3 size=3
stride=1 stride=1
@ -44,6 +42,7 @@ size=2
stride=2 stride=2
[convolutional] [convolutional]
batch_normalize=1
filters=64 filters=64
size=3 size=3
stride=1 stride=1
@ -55,6 +54,7 @@ size=2
stride=2 stride=2
[convolutional] [convolutional]
batch_normalize=1
filters=128 filters=128
size=3 size=3
stride=1 stride=1
@ -66,6 +66,7 @@ size=2
stride=2 stride=2
[convolutional] [convolutional]
batch_normalize=1
filters=256 filters=256
size=3 size=3
stride=1 stride=1
@ -77,6 +78,7 @@ size=2
stride=2 stride=2
[convolutional] [convolutional]
batch_normalize=1
filters=512 filters=512
size=3 size=3
stride=1 stride=1
@ -88,37 +90,21 @@ size=2
stride=2 stride=2
[convolutional] [convolutional]
filters=1024 batch_normalize=1
size=3 size=3
stride=1 stride=1
pad=1 pad=1
filters=1024
activation=leaky activation=leaky
[convolutional] [convolutional]
filters=1024 batch_normalize=1
size=3 size=3
stride=1 stride=1
pad=1 pad=1
filters=256
activation=leaky activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[connected]
output=256
activation=linear
[connected]
output=4096
activation=leaky
[dropout]
probability=.5
[connected] [connected]
output= 1470 output= 1470
activation=linear activation=linear

View File

@ -31,7 +31,7 @@ __device__ float logistic_activate_kernel(float x){return 1./(1. + exp(-x));}
__device__ float loggy_activate_kernel(float x){return 2./(1. + exp(-x)) - 1;} __device__ float loggy_activate_kernel(float x){return 2./(1. + exp(-x)) - 1;}
__device__ float relu_activate_kernel(float x){return x*(x>0);} __device__ float relu_activate_kernel(float x){return x*(x>0);}
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(exp(x)-1);} __device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(exp(x)-1);}
__device__ float relie_activate_kernel(float x){return x*(x>0);} __device__ float relie_activate_kernel(float x){return (x>0) ? x : .01*x;}
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;} __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;} __device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;}
__device__ float tanh_activate_kernel(float x){return (2/(1 + exp(-2*x)) - 1);} __device__ float tanh_activate_kernel(float x){return (2/(1 + exp(-2*x)) - 1);}

View File

@ -36,7 +36,7 @@ static inline float logistic_activate(float x){return 1./(1. + exp(-x));}
static inline float loggy_activate(float x){return 2./(1. + exp(-x)) - 1;} static inline float loggy_activate(float x){return 2./(1. + exp(-x)) - 1;}
static inline float relu_activate(float x){return x*(x>0);} static inline float relu_activate(float x){return x*(x>0);}
static inline float elu_activate(float x){return (x >= 0)*x + (x < 0)*(exp(x)-1);} static inline float elu_activate(float x){return (x >= 0)*x + (x < 0)*(exp(x)-1);}
static inline float relie_activate(float x){return x*(x>0);} static inline float relie_activate(float x){return (x>0) ? x : .01*x;}
static inline float ramp_activate(float x){return x*(x>0)+.1*x;} static inline float ramp_activate(float x){return x*(x>0)+.1*x;}
static inline float leaky_activate(float x){return (x>0) ? x : .1*x;} static inline float leaky_activate(float x){return (x>0) ? x : .1*x;}
static inline float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);} static inline float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);}

View File

@ -95,6 +95,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
args.min = net.min_crop; args.min = net.min_crop;
args.max = net.max_crop; args.max = net.max_crop;
args.angle = net.angle; args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure; args.exposure = net.exposure;
args.saturation = net.saturation; args.saturation = net.saturation;
args.hue = net.hue; args.hue = net.hue;

View File

@ -187,7 +187,7 @@ void denormalize_connected_layer(layer l)
{ {
int i, j; int i, j;
for(i = 0; i < l.outputs; ++i){ for(i = 0; i < l.outputs; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
for(j = 0; j < l.inputs; ++j){ for(j = 0; j < l.inputs; ++j){
l.weights[i*l.inputs + j] *= scale; l.weights[i*l.inputs + j] *= scale;
} }
@ -198,6 +198,23 @@ void denormalize_connected_layer(layer l)
} }
} }
void statistics_connected_layer(layer l)
{
if(l.batch_normalize){
printf("Scales ");
print_statistics(l.scales, l.outputs);
printf("Rolling Mean ");
print_statistics(l.rolling_mean, l.outputs);
printf("Rolling Variance ");
print_statistics(l.rolling_variance, l.outputs);
}
printf("Biases ");
print_statistics(l.biases, l.outputs);
printf("Weights ");
print_statistics(l.weights, l.outputs);
}
#ifdef GPU #ifdef GPU
void pull_connected_layer(connected_layer l) void pull_connected_layer(connected_layer l)

View File

@ -13,6 +13,7 @@ void forward_connected_layer(connected_layer layer, network_state state);
void backward_connected_layer(connected_layer layer, network_state state); void backward_connected_layer(connected_layer layer, network_state state);
void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay); void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay);
void denormalize_connected_layer(layer l); void denormalize_connected_layer(layer l);
void statistics_connected_layer(layer l);
#ifdef GPU #ifdef GPU
void forward_connected_layer_gpu(connected_layer layer, network_state state); void forward_connected_layer_gpu(connected_layer layer, network_state state);

View File

@ -254,6 +254,39 @@ void normalize_net(char *cfgfile, char *weightfile, char *outfile)
save_weights(net, outfile); save_weights(net, outfile);
} }
void statistics_net(char *cfgfile, char *weightfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
if (weightfile) {
load_weights(&net, weightfile);
}
int i;
for (i = 0; i < net.n; ++i) {
layer l = net.layers[i];
if (l.type == CONNECTED && l.batch_normalize) {
printf("Connected Layer %d\n", i);
statistics_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
printf("GRU Layer %d\n", i);
printf("Input Z\n");
statistics_connected_layer(*l.input_z_layer);
printf("Input R\n");
statistics_connected_layer(*l.input_r_layer);
printf("Input H\n");
statistics_connected_layer(*l.input_h_layer);
printf("State Z\n");
statistics_connected_layer(*l.state_z_layer);
printf("State R\n");
statistics_connected_layer(*l.state_r_layer);
printf("State H\n");
statistics_connected_layer(*l.state_h_layer);
}
printf("\n");
}
}
void denormalize_net(char *cfgfile, char *weightfile, char *outfile) void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{ {
gpu_index = -1; gpu_index = -1;
@ -374,6 +407,8 @@ int main(int argc, char **argv)
reset_normalize_net(argv[2], argv[3], argv[4]); reset_normalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "denormalize")){ } else if (0 == strcmp(argv[1], "denormalize")){
denormalize_net(argv[2], argv[3], argv[4]); denormalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "statistics")){
statistics_net(argv[2], argv[3]);
} else if (0 == strcmp(argv[1], "normalize")){ } else if (0 == strcmp(argv[1], "normalize")){
normalize_net(argv[2], argv[3], argv[4]); normalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "rescale")){ } else if (0 == strcmp(argv[1], "rescale")){

View File

@ -100,7 +100,7 @@ matrix load_image_paths(char **paths, int n, int w, int h)
return X; return X;
} }
matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float hue, float saturation, float exposure) matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{ {
int i; int i;
matrix X; matrix X;
@ -110,7 +110,7 @@ matrix load_image_augment_paths(char **paths, int n, int min, int max, int size,
for(i = 0; i < n; ++i){ for(i = 0; i < n; ++i){
image im = load_image_color(paths[i], 0, 0); image im = load_image_color(paths[i], 0, 0);
image crop = random_augment_image(im, angle, min, max, size); image crop = random_augment_image(im, angle, aspect, min, max, size);
int flip = rand_r(&data_seed)%2; int flip = rand_r(&data_seed)%2;
if (flip) flip_image(crop); if (flip) flip_image(crop);
random_distort_image(crop, hue, saturation, exposure); random_distort_image(crop, hue, saturation, exposure);
@ -676,15 +676,16 @@ void *load_thread(void *ptr)
load_args a = *(struct load_args*)ptr; load_args a = *(struct load_args*)ptr;
if(a.exposure == 0) a.exposure = 1; if(a.exposure == 0) a.exposure = 1;
if(a.saturation == 0) a.saturation = 1; if(a.saturation == 0) a.saturation = 1;
if(a.aspect == 0) a.aspect = 1;
if (a.type == OLD_CLASSIFICATION_DATA){ if (a.type == OLD_CLASSIFICATION_DATA){
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
} else if (a.type == CLASSIFICATION_DATA){ } else if (a.type == CLASSIFICATION_DATA){
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.hue, a.saturation, a.exposure); *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
} else if (a.type == SUPER_DATA){ } else if (a.type == SUPER_DATA){
*a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale); *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
} else if (a.type == STUDY_DATA){ } else if (a.type == STUDY_DATA){
*a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.hue, a.saturation, a.exposure); *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
} else if (a.type == WRITING_DATA){ } else if (a.type == WRITING_DATA){
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
} else if (a.type == REGION_DATA){ } else if (a.type == REGION_DATA){
@ -699,7 +700,7 @@ void *load_thread(void *ptr)
*(a.im) = load_image_color(a.path, 0, 0); *(a.im) = load_image_color(a.path, 0, 0);
*(a.resized) = resize_image(*(a.im), a.w, a.h); *(a.resized) = resize_image(*(a.im), a.w, a.h);
} else if (a.type == TAG_DATA){ } else if (a.type == TAG_DATA){
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.hue, a.saturation, a.exposure); *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
//*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); //*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
} }
free(ptr); free(ptr);
@ -741,13 +742,13 @@ data load_data(char **paths, int n, int m, char **labels, int k, int w, int h)
return d; return d;
} }
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float hue, float saturation, float exposure) data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{ {
data d = {0}; data d = {0};
d.indexes = calloc(n, sizeof(int)); d.indexes = calloc(n, sizeof(int));
if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes);
d.shallow = 0; d.shallow = 0;
d.X = load_image_augment_paths(paths, n, min, max, size, angle, hue, saturation, exposure); d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
d.y = load_labels_paths(paths, n, labels, k); d.y = load_labels_paths(paths, n, labels, k);
if(m) free(paths); if(m) free(paths);
return d; return d;
@ -783,25 +784,25 @@ data load_data_super(char **paths, int n, int m, int w, int h, int scale)
return d; return d;
} }
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float hue, float saturation, float exposure) data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{ {
if(m) paths = get_random_paths(paths, n, m); if(m) paths = get_random_paths(paths, n, m);
data d = {0}; data d = {0};
d.shallow = 0; d.shallow = 0;
d.X = load_image_augment_paths(paths, n, min, max, size, angle, hue, saturation, exposure); d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
d.y = load_labels_paths(paths, n, labels, k); d.y = load_labels_paths(paths, n, labels, k);
if(m) free(paths); if(m) free(paths);
return d; return d;
} }
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float hue, float saturation, float exposure) data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{ {
if(m) paths = get_random_paths(paths, n, m); if(m) paths = get_random_paths(paths, n, m);
data d = {0}; data d = {0};
d.w = size; d.w = size;
d.h = size; d.h = size;
d.shallow = 0; d.shallow = 0;
d.X = load_image_augment_paths(paths, n, min, max, size, angle, hue, saturation, exposure); d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure);
d.y = load_tags_paths(paths, n, k); d.y = load_tags_paths(paths, n, k);
if(m) free(paths); if(m) free(paths);
return d; return d;

View File

@ -52,6 +52,7 @@ typedef struct load_args{
int scale; int scale;
float jitter; float jitter;
float angle; float angle;
float aspect;
float saturation; float saturation;
float exposure; float exposure;
float hue; float hue;
@ -76,11 +77,11 @@ data load_data_captcha(char **paths, int n, int m, int k, int w, int h);
data load_data_captcha_encode(char **paths, int n, int m, int w, int h); data load_data_captcha_encode(char **paths, int n, int m, int w, int h);
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h); data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure); data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure);
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float hue, float saturation, float exposure); data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure);
matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float hue, float saturation, float exposure); matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure);
data load_data_super(char **paths, int n, int m, int w, int h, int scale); data load_data_super(char **paths, int n, int m, int w, int h, int scale);
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float hue, float saturation, float exposure); data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure);
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float hue, float saturation, float exposure); data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure);
data load_go(char *filename); data load_go(char *filename);
box_label *read_boxes(char *filename, int *n); box_label *read_boxes(char *filename, int *n);

View File

@ -117,6 +117,10 @@ static void convert_detections(float *predictions, int classes, int num, int squ
int box_index = index * (classes + 5); int box_index = index * (classes + 5);
boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w; boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h; boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
if(1){
boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / side * w;
boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / side * h;
}
boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w; boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h; boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
for(j = 0; j < classes; ++j){ for(j = 0; j < classes; ++j){
@ -237,6 +241,9 @@ void validate_detector(char *cfgfile, char *weightfile)
free_image(val_resized[t]); free_image(val_resized[t]);
} }
} }
for(j = 0; j < classes; ++j){
fclose(fps[j]);
}
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
} }

View File

@ -479,7 +479,8 @@ image float_to_image(int w, int h, int c, float *data)
return out; return out;
} }
image rotate_crop_image(image im, float rad, float s, int w, int h, int dx, int dy)
image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect)
{ {
int x, y, c; int x, y, c;
float cx = im.w/2.; float cx = im.w/2.;
@ -488,8 +489,8 @@ image rotate_crop_image(image im, float rad, float s, int w, int h, int dx, int
for(c = 0; c < im.c; ++c){ for(c = 0; c < im.c; ++c){
for(y = 0; y < h; ++y){ for(y = 0; y < h; ++y){
for(x = 0; x < w; ++x){ for(x = 0; x < w; ++x){
float rx = cos(rad)*(x/s + dx/s -cx) - sin(rad)*(y/s + dy/s -cy) + cx; float rx = cos(rad)*((x - w/2.)/s*aspect + dx/s*aspect) - sin(rad)*((y - h/2.)/s + dy/s) + cx;
float ry = sin(rad)*(x/s + dx/s -cx) + cos(rad)*(y/s + dy/s -cy) + cy; float ry = sin(rad)*((x - w/2.)/s*aspect + dx/s*aspect) + cos(rad)*((y - h/2.)/s + dy/s) + cy;
float val = bilinear_interpolate(im, rx, ry, c); float val = bilinear_interpolate(im, rx, ry, c);
set_pixel(rot, x, y, c, val); set_pixel(rot, x, y, c, val);
} }
@ -642,18 +643,23 @@ image random_crop_image(image im, int w, int h)
return crop; return crop;
} }
image random_augment_image(image im, float angle, int low, int high, int size) image random_augment_image(image im, float angle, float aspect, int low, int high, int size)
{ {
aspect = rand_scale(aspect);
int r = rand_int(low, high); int r = rand_int(low, high);
int min = (im.h < im.w) ? im.h : im.w; int min = (im.h < im.w*aspect) ? im.h : im.w*aspect;
float scale = (float)r / min; float scale = (float)r / min;
float rad = rand_uniform(-angle, angle) * TWO_PI / 360.; float rad = rand_uniform(-angle, angle) * TWO_PI / 360.;
int dx = rand_int(0, scale * im.w - size);
int dy = rand_int(0, scale * im.h - size);
//printf("%d %d\n", dx, dy);
image crop = rotate_crop_image(im, rad, scale, size, size, dx, dy); float dx = (im.w*scale/aspect - size) / 2.;
float dy = (im.h*scale - size) / 2.;
if(dx < 0) dx = 0;
if(dy < 0) dy = 0;
dx = rand_uniform(-dx, dx);
dy = rand_uniform(-dy, dy);
image crop = rotate_crop_image(im, rad, scale, size, size, dx, dy, aspect);
return crop; return crop;
} }
@ -971,6 +977,11 @@ void test_resize(char *filename)
show_image(c4, "C4"); show_image(c4, "C4");
#ifdef OPENCV #ifdef OPENCV
while(1){ while(1){
image aug = random_augment_image(im, 0, 320, 448, 320, .75);
show_image(aug, "aug");
free_image(aug);
float exposure = 1.15; float exposure = 1.15;
float saturation = 1.15; float saturation = 1.15;
float hue = .05; float hue = .05;

View File

@ -31,7 +31,7 @@ image image_distance(image a, image b);
void scale_image(image m, float s); void scale_image(image m, float s);
image crop_image(image im, int dx, int dy, int w, int h); image crop_image(image im, int dx, int dy, int w, int h);
image random_crop_image(image im, int w, int h); image random_crop_image(image im, int w, int h);
image random_augment_image(image im, float angle, int low, int high, int size); image random_augment_image(image im, float angle, float aspect, int low, int high, int size);
void random_distort_image(image im, float hue, float saturation, float exposure); void random_distort_image(image im, float hue, float saturation, float exposure);
image resize_image(image im, int w, int h); image resize_image(image im, int w, int h);
image resize_min(image im, int min); image resize_min(image im, int min);

View File

@ -41,6 +41,7 @@ typedef struct network{
int max_crop; int max_crop;
int min_crop; int min_crop;
float angle; float angle;
float aspect;
float exposure; float exposure;
float saturation; float saturation;
float hue; float hue;

View File

@ -497,6 +497,7 @@ void parse_net_options(list *options, network *net)
net->min_crop = option_find_int_quiet(options, "min_crop",net->w); net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
net->angle = option_find_float_quiet(options, "angle", 0); net->angle = option_find_float_quiet(options, "angle", 0);
net->aspect = option_find_float_quiet(options, "aspect", 1);
net->saturation = option_find_float_quiet(options, "saturation", 1); net->saturation = option_find_float_quiet(options, "saturation", 1);
net->exposure = option_find_float_quiet(options, "exposure", 1); net->exposure = option_find_float_quiet(options, "exposure", 1);
net->hue = option_find_float_quiet(options, "hue", 0); net->hue = option_find_float_quiet(options, "hue", 0);

View File

@ -80,8 +80,8 @@ box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust,
b.w = logistic_activate(x[index + 2]); b.w = logistic_activate(x[index + 2]);
b.h = logistic_activate(x[index + 3]); b.h = logistic_activate(x[index + 3]);
} }
//if(adjust && b.w < .01) b.w = .01; if(adjust && b.w < .01) b.w = .01;
//if(adjust && b.h < .01) b.h = .01; if(adjust && b.h < .01) b.h = .01;
return b; return b;
} }
@ -149,7 +149,6 @@ void forward_region_layer(const region_layer l, network_state state)
l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
if(best_iou > .5) l.delta[index + 4] = 0; if(best_iou > .5) l.delta[index + 4] = 0;
/*
if(*(state.net.seen) < 6400){ if(*(state.net.seen) < 6400){
box truth = {0}; box truth = {0};
truth.x = (i + .5)/l.w; truth.x = (i + .5)/l.w;
@ -158,7 +157,6 @@ void forward_region_layer(const region_layer l, network_state state)
truth.h = .5; truth.h = .5;
delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1); delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1);
} }
*/
} }
} }
} }

View File

@ -414,6 +414,13 @@ void mean_arrays(float **a, int n, int els, float *avg)
} }
} }
void print_statistics(float *a, int n)
{
float m = mean_array(a, n);
float v = variance_array(a, n);
printf("MSE: %.6f, Mean: %.6f, Variance: %.6f\n", mse_array(a, n), m, v);
}
float variance_array(float *a, int n) float variance_array(float *a, int n)
{ {
int i; int i;

View File

@ -57,6 +57,7 @@ float find_float_arg(int argc, char **argv, char *arg, float def);
int find_arg(int argc, char* argv[], char *arg); int find_arg(int argc, char* argv[], char *arg);
char *find_char_arg(int argc, char **argv, char *arg, char *def); char *find_char_arg(int argc, char **argv, char *arg, char *def);
int sample_array(float *a, int n); int sample_array(float *a, int n);
void print_statistics(float *a, int n);
#endif #endif