MERRY CHRISTMAS I BROKE ALL YOUR DETECTION THINGS

This commit is contained in:
Joseph Redmon
2017-12-26 10:52:21 -08:00
parent 80d9bec20f
commit 6e79145309
36 changed files with 1166 additions and 689 deletions

View File

@ -403,6 +403,7 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
if(indexes[j] == class) avg_topk += 1;
}
printf("%s, %d, %f, %f, \n", paths[i], class, pred[0], pred[1]);
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
}
}
@ -704,6 +705,44 @@ void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_
}
}
void file_output_classifier(char *datacfg, char *filename, char *weightfile, char *listfile)
{
int i,j;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
//char *label_list = option_find_str(options, "names", "data/labels.list");
int classes = option_find_int(options, "classes", 2);
list *plist = get_paths(listfile);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
for(i = 0; i < m; ++i){
image im = load_image_color(paths[i], 0, 0);
image resized = resize_min(im, net->w);
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
float *pred = network_predict(net, crop.data);
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 0, 1);
if(resized.data != im.data) free_image(resized);
free_image(im);
free_image(crop);
printf("%s", paths[i]);
for(j = 0; j < classes; ++j){
printf("\t%g", pred[j]);
}
printf("\n");
}
}
void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
@ -922,15 +961,26 @@ void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_ind
srand(2222222);
CvCapture * cap;
int w = 1280;
int h = 720;
if(filename){
cap = cvCaptureFromFile(filename);
}else{
cap = cvCaptureFromCAM(cam_index);
}
if(w){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w);
}
if(h){
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h);
}
int top = option_find_int(options, "top", 1);
char *name_list = option_find_str(options, "names", 0);
char *label_list = option_find_str(options, "labels", 0);
char *name_list = option_find_str(options, "names", label_list);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
@ -998,6 +1048,7 @@ void run_classifier(int argc, char **argv)
char *layer_s = (argc > 7) ? argv[7]: 0;
int layer = layer_s ? atoi(layer_s) : -1;
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
else if(0==strcmp(argv[2], "fout")) file_output_classifier(data, cfg, weights, filename);
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);

View File

@ -94,14 +94,14 @@ void train_coco(char *cfgfile, char *weightfile)
save_weights(net, buff);
}
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
static void print_cocos(FILE *fp, int image_id, detection *dets, int num_boxes, int classes, int w, int h)
{
int i, j;
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -114,7 +114,7 @@ void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxe
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
}
}
}
@ -140,17 +140,13 @@ void validate_coco(char *cfg, char *weights)
layer l = net->layers[net->n-1];
int classes = l.classes;
int side = l.side;
int j;
char buff[1024];
snprintf(buff, 1024, "%s/coco_results.json", base);
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -199,9 +195,9 @@ void validate_coco(char *cfg, char *weights)
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
fill_network_boxes(net, w, h, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, dets, l.side*l.side*l.n, classes, w, h);
free_image(val[t]);
free_image(val_resized[t]);
}
@ -235,9 +231,7 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -245,7 +239,6 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
float thresh = .001;
int nms = 0;
float iou_thresh = .5;
float nms_thresh = .5;
int total = 0;
int correct = 0;
@ -258,8 +251,9 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
fill_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, dets);
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -270,7 +264,7 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
if(dets[k].objectness > thresh){
++proposals;
}
}
@ -279,8 +273,8 @@ void validate_coco_recall(char *cfgfile, char *weightfile)
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
@ -308,10 +302,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
clock_t time;
char buff[256];
char *input = buff;
int j;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
detection *dets = make_network_boxes(net);
while(1){
if(filename){
strncpy(input, filename, 256);
@ -328,9 +319,11 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, 0, coco_classes, alphabet, 80);
fill_network_boxes(net, 1, 1, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80);
save_image(im, "prediction");
show_image(im, "predictions");
free_image(im);

View File

@ -12,7 +12,6 @@ extern void run_coco(int argc, char **argv);
extern void run_captcha(int argc, char **argv);
extern void run_nightmare(int argc, char **argv);
extern void run_classifier(int argc, char **argv);
extern void run_attention(int argc, char **argv);
extern void run_regressor(int argc, char **argv);
extern void run_segmenter(int argc, char **argv);
extern void run_char_rnn(int argc, char **argv);
@ -432,8 +431,6 @@ int main(int argc, char **argv)
predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
} else if (0 == strcmp(argv[1], "classifier")){
run_classifier(argc, argv);
} else if (0 == strcmp(argv[1], "attention")){
run_attention(argc, argv);
} else if (0 == strcmp(argv[1], "regressor")){
run_regressor(argc, argv);
} else if (0 == strcmp(argv[1], "segmenter")){

View File

@ -2,6 +2,7 @@
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
list *options = read_data_cfg(datacfg);
@ -73,6 +74,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
free_data(train);
load_thread = load_data(args);
#pragma omp parallel for
for(i = 0; i < ngpus; ++i){
resize_network(nets[i], dim, dim);
}
@ -84,28 +86,28 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
load_thread = load_data(args);
/*
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[10] + 1 + k*5);
if(!b.x) break;
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
}
*/
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[10] + 1 + k*5);
if(!b.x) break;
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
}
*/
/*
int zz;
for(zz = 0; zz < train.X.cols; ++zz){
image im = float_to_image(net->w, net->h, 3, train.X.vals[zz]);
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[zz] + k*5, 1);
printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
draw_bbox(im, b, 1, 1,0,0);
}
show_image(im, "truth11");
cvWaitKey(0);
save_image(im, "truth11");
}
*/
int zz;
for(zz = 0; zz < train.X.cols; ++zz){
image im = float_to_image(net->w, net->h, 3, train.X.vals[zz]);
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[zz] + k*5, 1);
printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
draw_bbox(im, b, 1, 1,0,0);
}
show_image(im, "truth11");
cvWaitKey(0);
save_image(im, "truth11");
}
*/
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
@ -158,15 +160,15 @@ static int get_coco_image_id(char *filename)
return atoi(p+1);
}
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
{
int i, j;
int image_id = get_coco_image_id(image_path);
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -179,19 +181,19 @@ static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, i
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
}
}
}
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2. + 1;
float xmax = boxes[i].x + boxes[i].w/2. + 1;
float ymin = boxes[i].y - boxes[i].h/2. + 1;
float ymax = boxes[i].y + boxes[i].h/2. + 1;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2. + 1;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2. + 1;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2. + 1;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2. + 1;
if (xmin < 1) xmin = 1;
if (ymin < 1) ymin = 1;
@ -199,20 +201,20 @@ void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs,
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
xmin, ymin, xmax, ymax);
}
}
}
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -221,7 +223,7 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int
for(j = 0; j < classes; ++j){
int class = j;
if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, dets[i].prob[class],
xmin, ymin, xmax, ymax);
}
}
@ -277,10 +279,7 @@ void validate_detector_flip(char *datacfg, char *cfgfile, char *weightfile, char
}
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -334,14 +333,14 @@ void validate_detector_flip(char *datacfg, char *cfgfile, char *weightfile, char
network_predict(net, input.data);
int w = val[t].w;
int h = val[t].h;
get_region_boxes(l, w, h, net->w, net->h, thresh, probs, boxes, 0, 0, map, .5, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
fill_network_boxes(net, w, h, thresh, .5, map, 0, dets);
if (nms) do_nms_sort(dets, l.w*l.h*l.n, classes, nms);
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_cocos(fp, path, dets, l.w*l.h*l.n, classes, w, h);
} else if (imagenet){
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_imagenet_detections(fp, i+t-nthreads+1, dets, l.w*l.h*l.n, classes, w, h);
} else {
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_detector_detections(fps, id, dets, l.w*l.h*l.n, classes, w, h);
}
free(id);
free_image(val[t]);
@ -410,10 +409,8 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *out
}
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));
detection *dets = make_network_boxes(net);
int nboxes = num_boxes(net);
int m = plist->size;
int i=0;
@ -462,14 +459,14 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *out
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_region_boxes(l, w, h, net->w, net->h, thresh, probs, boxes, 0, 0, map, .5, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
fill_network_boxes(net, w, h, thresh, .5, map, 0, dets);
if (nms) do_nms_sort(dets, nboxes, classes, nms);
if (coco){
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_cocos(fp, path, dets, nboxes, classes, w, h);
} else if (imagenet){
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_imagenet_detections(fp, i+t-nthreads+1, dets, nboxes, classes, w, h);
} else {
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
print_detector_detections(fps, id, dets, nboxes, classes, w, h);
}
free(id);
free_image(val[t]);
@ -498,12 +495,9 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
char **paths = (char **)list_to_array(plist);
layer l = net->layers[net->n-1];
int classes = l.classes;
int j, k;
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -516,6 +510,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
int correct = 0;
int proposals = 0;
float avg_iou = 0;
int nboxes = num_boxes(net);
for(i = 0; i < m; ++i){
char *path = paths[i];
@ -523,8 +518,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_region_boxes(l, sized.w, sized.h, net->w, net->h, thresh, probs, boxes, 0, 1, 0, .5, 1);
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
fill_network_boxes(net, sized.w, sized.h, thresh, .5, 0, 1, dets);
if (nms) do_nms_obj(dets, nboxes, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -534,8 +529,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < l.w*l.h*l.n; ++k){
if(probs[k][0] > thresh){
for(k = 0; k < nboxes; ++k){
if(dets[k].objectness > thresh){
++proposals;
}
}
@ -544,8 +539,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < l.w*l.h*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
@ -562,6 +557,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
}
}
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
list *options = read_data_cfg(datacfg);
@ -575,7 +571,6 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
double time;
char buff[256];
char *input = buff;
int j;
float nms=.3;
while(1){
if(filename){
@ -595,23 +590,18 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
//resize_network(net, sized.w, sized.h);
layer l = net->layers[net->n-1];
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));
float **masks = 0;
if (l.coords > 4){
masks = calloc(l.w*l.h*l.n, sizeof(float*));
for(j = 0; j < l.w*l.h*l.n; ++j) masks[j] = calloc(l.coords-4, sizeof(float *));
}
int nboxes = num_boxes(net);
printf("%d\n", nboxes);
float *X = sized.data;
time=what_time_is_it_now();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
get_region_boxes(l, im.w, im.h, net->w, net->h, thresh, probs, boxes, masks, 0, 0, hier_thresh, 1);
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, masks, names, alphabet, l.classes);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
free_detections(dets, num_boxes(net));
if(outfile){
save_image(im, outfile);
}
@ -630,12 +620,19 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
free_image(im);
free_image(sized);
free(boxes);
free_ptrs((void **)probs, l.w*l.h*l.n);
if (filename) break;
}
}
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets)
{
network_predict_image(net, im);
layer l = net->layers[net->n-1];
int nboxes = num_boxes(net);
fill_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 0, dets);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
}
void run_detector(int argc, char **argv)
{
char *prefix = find_char_arg(argc, argv, "-prefix", 0);

View File

@ -408,6 +408,8 @@ void test_dcgan(char *cfgfile, char *weightfile)
for(i = 0; i < im.w*im.h*im.c; ++i){
im.data[i] = rand_normal();
}
float mag = mag_array(im.data, im.w*im.h*im.c);
//scale_array(im.data, im.w*im.h*im.c, 1./mag);
float *X = im.data;
time=clock();
@ -426,21 +428,10 @@ void test_dcgan(char *cfgfile, char *weightfile)
}
}
void dcgan_batch(network gnet, network anet)
{
//float *input = calloc(x_size, sizeof(float));
}
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images)
{
#ifdef GPU
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
//char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
//char *train_images = "data/64.txt";
//char *train_images = "data/alp.txt";
//char *train_images = "data/cifar.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfg);
@ -498,7 +489,7 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
//data generated = copy_data(train);
while (get_current_batch(gnet) < gnet->max_batches) {
start += 1;
start += 1;
i += 1;
time=clock();
pthread_join(load_thread, 0);
@ -513,8 +504,8 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
data gen = copy_data(train);
for (j = 0; j < imgs; ++j) {
train.y.vals[j][0] = .95;
gen.y.vals[j][0] = .05;
train.y.vals[j][0] = 1;
gen.y.vals[j][0] = 0;
}
time=clock();
@ -524,31 +515,35 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
for(z = 0; z < x_size; ++z){
gnet->input[z] = rand_normal();
}
for(z = 0; z < gnet->batch; ++z){
float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
}
cuda_push_array(gnet->input_gpu, gnet->input, x_size);
cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
//cuda_push_array(gnet->input_gpu, gnet->input, x_size);
//cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
*gnet->seen += gnet->batch;
forward_network_gpu(gnet);
forward_network(gnet);
fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
fill_gpu(anet->truths*anet->batch, .95, anet->truth_gpu, 1);
copy_gpu(anet->inputs*anet->batch, imlayer.output_gpu, 1, anet->input_gpu, 1);
fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
anet->delta_gpu = imerror;
forward_network_gpu(anet);
backward_network_gpu(anet);
forward_network(anet);
backward_network(anet);
float genaloss = *anet->cost / anet->batch;
printf("%f\n", genaloss);
scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
scal_gpu(imlayer.outputs*imlayer.batch, .00, gnet->layers[gnet->n-1].delta_gpu, 1);
scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch));
axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);
backward_network_gpu(gnet);
backward_network(gnet);
for(k = 0; k < gnet->batch; ++k){
int index = j*gnet->batch + k;
@ -565,23 +560,25 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
//scale_image(im, .5);
//translate_image(im2, 1);
//scale_image(im2, .5);
#ifdef OPENCV
#ifdef OPENCV
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
save_image(im, "gen");
save_image(im2, "train");
cvWaitKey(50);
}
#endif
#endif
/*
if(aloss < .1){
anet->learning_rate = 0;
} else if (aloss > .3){
anet->learning_rate = orig_rate;
}
*/
/*
if(aloss < .1){
anet->learning_rate = 0;
} else if (aloss > .3){
anet->learning_rate = orig_rate;
}
*/
update_network_gpu(gnet);
@ -747,7 +744,7 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
update_network_gpu(net);
#ifdef OPENCV
#ifdef OPENCV
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gray.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
@ -755,7 +752,7 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
show_image(im2, "train");
cvWaitKey(50);
}
#endif
#endif
free_data(merge);
free_data(train);
free_data(gray);
@ -786,259 +783,259 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
}
/*
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
{
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
{
#ifdef GPU
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net->seen = 0;
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net->seen = 0;
char *abase = basecfg(acfgfile);
network anet = parse_network_cfg(acfgfile);
if(aweightfile){
load_weights(&anet, aweightfile);
}
if(clear) *anet->seen = 0;
char *abase = basecfg(acfgfile);
network anet = parse_network_cfg(acfgfile);
if(aweightfile){
load_weights(&anet, aweightfile);
}
if(clear) *anet->seen = 0;
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net->n; ++i) {
if (net->layers[i].out_c == 3) {
imlayer = net->layers[i];
break;
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net->n; ++i) {
if (net->layers[i].out_c == 3) {
imlayer = net->layers[i];
break;
}
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
i = *net->seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net->batch;
int y_size = 1*net->batch;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = 0;
gstate.delta = 0;
gstate.train = 1;
float *X = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet->batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_gpu(ay_size, 1, ones_gpu, 1);
float aloss_avg = -1;
float gloss_avg = -1;
//data generated = copy_data(train);
while (get_current_batch(net) < net->max_batches) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data generated = copy_data(train);
time=clock();
float gloss = 0;
for(j = 0; j < net->subdivisions; ++j){
get_next_batch(train, net->batch, j*net->batch, X, y);
cuda_push_array(gstate.input, X, x_size);
*net->seen += net->batch;
forward_network_gpu(net, gstate);
fill_gpu(imlayer.outputs, 0, imerror, 1);
astate.input = imlayer.output_gpu;
astate.delta = imerror;
astate.truth = ones_gpu;
forward_network_gpu(anet, astate);
backward_network_gpu(anet, astate);
scal_gpu(imlayer.outputs, 1, imerror, 1);
axpy_gpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
backward_network_gpu(net, gstate);
printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs));
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
gloss += get_network_cost(net) /(net->subdivisions*net->batch);
cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch);
for(k = 0; k < net->batch; ++k){
int index = j*net->batch + k;
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
generated.y.vals[index][0] = 0;
}
}
harmless_update_network_gpu(anet);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
i = *net->seen/imgs;
data train, buffer;
data merge = concat_data(train, generated);
randomize_data(merge);
float aloss = train_network(anet, merge);
update_network_gpu(net);
update_network_gpu(anet);
free_data(merge);
free_data(train);
free_data(generated);
if (aloss_avg < 0) aloss_avg = aloss;
aloss_avg = aloss_avg*.9 + aloss*.1;
gloss_avg = gloss_avg*.9 + gloss*.1;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net->batch;
int y_size = 1*net->batch;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = 0;
gstate.delta = 0;
gstate.train = 1;
float *X = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet->batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_gpu(ay_size, 1, ones_gpu, 1);
float aloss_avg = -1;
float gloss_avg = -1;
//data generated = copy_data(train);
while (get_current_batch(net) < net->max_batches) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data generated = copy_data(train);
time=clock();
float gloss = 0;
for(j = 0; j < net->subdivisions; ++j){
get_next_batch(train, net->batch, j*net->batch, X, y);
cuda_push_array(gstate.input, X, x_size);
*net->seen += net->batch;
forward_network_gpu(net, gstate);
fill_gpu(imlayer.outputs, 0, imerror, 1);
astate.input = imlayer.output_gpu;
astate.delta = imerror;
astate.truth = ones_gpu;
forward_network_gpu(anet, astate);
backward_network_gpu(anet, astate);
scal_gpu(imlayer.outputs, 1, imerror, 1);
axpy_gpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
backward_network_gpu(net, gstate);
printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs));
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
gloss += get_network_cost(net) /(net->subdivisions*net->batch);
cuda_pull_array(imlayer.output_gpu, imlayer.output, imlayer.outputs*imlayer.batch);
for(k = 0; k < net->batch; ++k){
int index = j*net->batch + k;
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
generated.y.vals[index][0] = 0;
}
}
harmless_update_network_gpu(anet);
data merge = concat_data(train, generated);
randomize_data(merge);
float aloss = train_network(anet, merge);
update_network_gpu(net);
update_network_gpu(anet);
free_data(merge);
free_data(train);
free_data(generated);
if (aloss_avg < 0) aloss_avg = aloss;
aloss_avg = aloss_avg*.9 + aloss*.1;
gloss_avg = gloss_avg*.9 + gloss*.1;
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
#endif
}
*/
/*
void train_lsd(char *cfgfile, char *weightfile, int clear)
{
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net->seen = 0;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
int i = *net->seen/imgs;
data train, buffer;
void train_lsd(char *cfgfile, char *weightfile, int clear)
{
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net->seen = 0;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
int i = *net->seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net->max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net->max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
*/

View File

@ -83,6 +83,10 @@ void optimize_picture(network *net, image orig, int max_layer, float scale, floa
*/
//rate = rate / abs_mean(out.data, out.w*out.h*out.c);
image gray = make_image(out.w, out.h, out.c);
fill_image(gray, .5);
axpy_cpu(orig.w*orig.h*orig.c, -1, orig.data, 1, gray.data, 1);
axpy_cpu(orig.w*orig.h*orig.c, .1, gray.data, 1, out.data, 1);
if(norm) normalize_array(out.data, out.w*out.h*out.c);
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);

View File

@ -93,6 +93,8 @@ void test_super(char *cfgfile, char *weightfile, char *filename)
image out = get_network_image(net);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
save_image(out, "out");
show_image(out, "out");
cvWaitKey(0);
free_image(im);
if (filename) break;

View File

@ -74,14 +74,14 @@ void train_yolo(char *cfgfile, char *weightfile)
save_weights(net, buff);
}
void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
void print_yolo_detections(FILE **fps, char *id, int total, int classes, int w, int h, detection *dets)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
@ -89,7 +89,7 @@ void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
xmin, ymin, xmax, ymax);
}
}
@ -118,9 +118,6 @@ void validate_yolo(char *cfg, char *weights)
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
@ -136,6 +133,7 @@ void validate_yolo(char *cfg, char *weights)
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
detection *dets = make_network_boxes(net);
load_args args = {0};
args.w = net->w;
@ -169,9 +167,9 @@ void validate_yolo(char *cfg, char *weights)
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
fill_network_boxes(net, w, h, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
print_yolo_detections(fps, id, l.side*l.side*l.n, classes, w, h, dets);
free(id);
free_image(val[t]);
free_image(val_resized[t]);
@ -202,9 +200,7 @@ void validate_yolo_recall(char *cfg, char *weights)
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
detection *dets = make_network_boxes(net);
int m = plist->size;
int i=0;
@ -224,8 +220,9 @@ void validate_yolo_recall(char *cfg, char *weights)
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
fill_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, dets);
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
@ -236,7 +233,7 @@ void validate_yolo_recall(char *cfg, char *weights)
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
if(dets[k].objectness > thresh){
++proposals;
}
}
@ -245,8 +242,8 @@ void validate_yolo_recall(char *cfg, char *weights)
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
@ -273,11 +270,8 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
clock_t time;
char buff[256];
char *input = buff;
int j;
float nms=.4;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
detection *dets = make_network_boxes(net);
while(1){
if(filename){
strncpy(input, filename, 256);
@ -294,9 +288,11 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, 0, voc_names, alphabet, 20);
fill_network_boxes(net, 1, 1, thresh, 0, 0, 0, dets);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, dets, l.side*l.side*l.n, thresh, voc_names, alphabet, 20);
save_image(im, "predictions");
show_image(im, "predictions");