mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added batch to col2im, padding option
This commit is contained in:
parent
cd8d53df21
commit
70d622ea54
10
Makefile
10
Makefile
@ -23,19 +23,21 @@ CFLAGS= $(COMMON) $(OPTS)
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm
|
||||
VPATH=./src/
|
||||
EXEC=cnn
|
||||
OBJDIR=./obj/
|
||||
|
||||
OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o
|
||||
OBJ=network.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o
|
||||
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
||||
|
||||
all: $(EXEC)
|
||||
|
||||
$(EXEC): $(OBJ)
|
||||
$(EXEC): $(OBJS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) $^ -o $@
|
||||
|
||||
%.o: %.c
|
||||
$(OBJDIR)%.o: %.c
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
clean:
|
||||
rm -rf $(OBJ) $(EXEC)
|
||||
rm -rf $(OBJS) $(EXEC)
|
||||
|
||||
|
@ -2,6 +2,12 @@ typedef enum{
|
||||
SIGMOID, RELU, LINEAR, RAMP, TANH
|
||||
}ACTIVATION;
|
||||
|
||||
float linear_activate(float x){return x;}
|
||||
float sigmoid_activate(float x){return 1./(1. + exp(-x));}
|
||||
float relu_activate(float x){return x*(x>0);}
|
||||
float ramp_activate(float x){return x*(x>0)+.1*x;}
|
||||
float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
|
||||
|
||||
float activate(float x, ACTIVATION a, float dropout)
|
||||
{
|
||||
//if((float)rand()/RAND_MAX < dropout) return 0;
|
||||
|
@ -52,7 +52,7 @@ void test_convolve_matrix()
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i < 1000; ++i){
|
||||
im2col_cpu(dog.data, 1, dog.c, dog.h, dog.w, size, stride, matrix);
|
||||
im2col_cpu(dog.data, 1, dog.c, dog.h, dog.w, size, stride, 0, matrix);
|
||||
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
|
||||
}
|
||||
end = clock();
|
||||
@ -76,7 +76,7 @@ void verify_convolutional_layer()
|
||||
int size = 3;
|
||||
float eps = .00000001;
|
||||
image test = make_random_image(5,5, 1);
|
||||
convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU);
|
||||
convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU);
|
||||
image out = get_convolutional_image(layer);
|
||||
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
|
||||
|
||||
@ -301,7 +301,7 @@ void test_vince()
|
||||
void test_nist()
|
||||
{
|
||||
srand(444444);
|
||||
srand(888888);
|
||||
srand(222222);
|
||||
network net = parse_network_cfg("cfg/nist.cfg");
|
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
||||
@ -309,22 +309,26 @@ void test_nist()
|
||||
normalize_data_rows(test);
|
||||
//randomize_data(train);
|
||||
int count = 0;
|
||||
float lr = .00005;
|
||||
float lr = .000075;
|
||||
float momentum = .9;
|
||||
float decay = 0.0001;
|
||||
decay = 0;
|
||||
//clock_t start = clock(), end;
|
||||
int batch = 10000;
|
||||
while(++count <= 10000){
|
||||
float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
|
||||
int iters = 100;
|
||||
while(++count <= 10){
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, iters, lr, momentum, decay);
|
||||
end = clock();
|
||||
float test_acc = network_accuracy(net, test);
|
||||
printf("%3d %5f %5f\n",count, loss, test_acc);
|
||||
printf("%d: %f %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
||||
|
||||
//printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
|
||||
//end = clock();
|
||||
//printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
||||
//start=end;
|
||||
//lr *= .5;
|
||||
}
|
||||
//save_network(net, "cfg/nist_basic_trained.cfg");
|
||||
}
|
||||
|
||||
void test_ensemble()
|
||||
@ -431,7 +435,7 @@ void test_im2row()
|
||||
float *matrix = calloc(msize, sizeof(float));
|
||||
int i;
|
||||
for(i = 0; i < 1000; ++i){
|
||||
im2col_cpu(test.data, 1, c, h, w, size, stride, matrix);
|
||||
im2col_cpu(test.data, 1, c, h, w, size, stride, 0, matrix);
|
||||
//image render = float_to_image(mh, mw, mc, matrix);
|
||||
}
|
||||
}
|
||||
@ -442,34 +446,36 @@ void flip_network()
|
||||
save_network(net, "cfg/voc_imagenet_rev.cfg");
|
||||
}
|
||||
|
||||
void train_VOC()
|
||||
void tune_VOC()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/voc_start.cfg");
|
||||
srand(2222222);
|
||||
int i = 20;
|
||||
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
|
||||
float lr = .00001;
|
||||
float lr = .000005;
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
float decay = 0.0001;
|
||||
while(i++ < 1000 || 1){
|
||||
data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
|
||||
data train = load_data_image_pathfile_random("/home/pjreddie/VOC2012/trainval_paths.txt", 10, labels, 20, 256, 256);
|
||||
|
||||
image im = float_to_image(300, 400, 3,train.X.vals[0]);
|
||||
image im = float_to_image(256, 256, 3,train.X.vals[0]);
|
||||
show_image(im, "input");
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
|
||||
normalize_data_rows(train);
|
||||
translate_data_rows(train, -144);
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
|
||||
float loss = train_network_sgd(net, train, 10, lr, momentum, decay);
|
||||
end = clock();
|
||||
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
||||
free_data(train);
|
||||
/*
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
|
||||
sprintf(buff, "/home/pjreddie/voc_cfg/voc_ramp_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
*/
|
||||
//lr *= .99;
|
||||
}
|
||||
}
|
||||
@ -778,7 +784,7 @@ int main(int argc, char *argv[])
|
||||
//test_cifar10();
|
||||
//test_vince();
|
||||
//test_full();
|
||||
//train_VOC();
|
||||
//tune_VOC();
|
||||
//features_VOC_image(argv[1], argv[2], argv[3], 0);
|
||||
//features_VOC_image(argv[1], argv[2], argv[3], 1);
|
||||
//features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
|
47
src/col2im.c
47
src/col2im.c
@ -0,0 +1,47 @@
|
||||
inline void col2im_set_pixel(float *im, int height, int width, int channels,
|
||||
int row, int col, int channel, int pad, float val)
|
||||
{
|
||||
row -= pad;
|
||||
col -= pad;
|
||||
|
||||
if (row < 0 || col < 0 ||
|
||||
row >= height || col >= width) return;
|
||||
im[col + width*(row + channel*height)] = val;
|
||||
}
|
||||
//This one might be too, can't remember.
|
||||
void col2im_cpu(float* data_col,
|
||||
const int batch, const int channels, const int height, const int width,
|
||||
const int ksize, const int stride, int pad, float* data_im)
|
||||
{
|
||||
int c,h,w,b;
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
if (pad){
|
||||
height_col = 1 + (height-1) / stride;
|
||||
width_col = 1 + (width-1) / stride;
|
||||
pad = ksize/2;
|
||||
}
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int im_size = height*width*channels;
|
||||
int col_size = height_col*width_col*channels_col;
|
||||
for (b = 0; b < batch; ++b) {
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
for (h = 0; h < height_col; ++h) {
|
||||
for (w = 0; w < width_col; ++w) {
|
||||
int im_row = h_offset + h * stride;
|
||||
int im_col = w_offset + w * stride;
|
||||
double val = data_col[(c * height_col + h) * width_col + w];
|
||||
col2im_set_pixel(data_im, height, width, channels,
|
||||
im_row, im_col, c_im, pad, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
data_im += im_size;
|
||||
data_col+= col_size;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -57,8 +57,11 @@ void update_connected_layer(connected_layer layer, float step, float momentum, f
|
||||
|
||||
void forward_connected_layer(connected_layer layer, float *input, int train)
|
||||
{
|
||||
int i;
|
||||
if(!train) layer.dropout = 0;
|
||||
memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float));
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
@ -82,16 +85,16 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
float *a = input;
|
||||
float *b = layer.delta;
|
||||
float *c = layer.weight_updates;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
gemm(1,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
|
||||
m = layer.inputs;
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.batch;
|
||||
n = layer.inputs;
|
||||
|
||||
a = layer.weights;
|
||||
b = layer.delta;
|
||||
a = layer.delta;
|
||||
b = layer.weights;
|
||||
c = delta;
|
||||
|
||||
if(c) gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
|
||||
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
}
|
||||
|
||||
|
@ -5,12 +5,18 @@
|
||||
|
||||
int convolutional_out_height(convolutional_layer layer)
|
||||
{
|
||||
return (layer.h-layer.size)/layer.stride + 1;
|
||||
int h = layer.h;
|
||||
if (!layer.pad) h -= layer.size;
|
||||
else h -= 1;
|
||||
return h/layer.stride + 1;
|
||||
}
|
||||
|
||||
int convolutional_out_width(convolutional_layer layer)
|
||||
{
|
||||
return (layer.w-layer.size)/layer.stride + 1;
|
||||
int w = layer.w;
|
||||
if (!layer.pad) w -= layer.size;
|
||||
else w -= 1;
|
||||
return w/layer.stride + 1;
|
||||
}
|
||||
|
||||
image get_convolutional_image(convolutional_layer layer)
|
||||
@ -31,7 +37,7 @@ image get_convolutional_delta(convolutional_layer layer)
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
}
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
|
||||
@ -43,6 +49,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->batch = batch;
|
||||
layer->stride = stride;
|
||||
layer->size = size;
|
||||
layer->pad = pad;
|
||||
|
||||
layer->filters = calloc(c*n*size*size, sizeof(float));
|
||||
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
@ -64,6 +71,17 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
|
||||
layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
|
||||
|
||||
layer->biases_cl = cl_make_array(layer->biases, n);
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
||||
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
|
||||
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
|
||||
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
|
||||
@ -91,12 +109,14 @@ void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
|
||||
|
||||
void bias_output(const convolutional_layer layer)
|
||||
{
|
||||
int i,j;
|
||||
int i,j,b;
|
||||
int out_h = convolutional_out_height(layer);
|
||||
int out_w = convolutional_out_width(layer);
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
for(j = 0; j < out_h*out_w; ++j){
|
||||
layer.output[i*out_h*out_w + j] = layer.biases[i];
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
for(j = 0; j < out_h*out_w; ++j){
|
||||
layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -114,7 +134,7 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
im2col_cpu(in,layer.batch, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, b);
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
bias_output(layer);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array(layer.output, m*n, layer.activation, 0.);
|
||||
@ -169,7 +189,6 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
|
||||
if(delta){
|
||||
int i;
|
||||
m = layer.size*layer.size*layer.c;
|
||||
k = layer.n;
|
||||
n = convolutional_out_height(layer)*
|
||||
@ -183,9 +202,7 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
col2im_cpu(c+i*n/layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, delta+i*n/layer.batch);
|
||||
}
|
||||
col2im_cpu(c, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -14,6 +14,7 @@ typedef struct {
|
||||
int n;
|
||||
int size;
|
||||
int stride;
|
||||
int pad;
|
||||
float *filters;
|
||||
float *filter_updates;
|
||||
float *filter_momentum;
|
||||
@ -47,7 +48,7 @@ typedef struct {
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in);
|
||||
#endif
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, float *in);
|
||||
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay);
|
||||
|
@ -166,6 +166,14 @@ void scale_data_rows(data d, float s)
|
||||
}
|
||||
}
|
||||
|
||||
void translate_data_rows(data d, float s)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < d.X.rows; ++i){
|
||||
translate_array(d.X.vals[i], d.X.cols, s);
|
||||
}
|
||||
}
|
||||
|
||||
void normalize_data_rows(data d)
|
||||
{
|
||||
int i;
|
||||
|
@ -22,6 +22,7 @@ list *get_paths(char *filename);
|
||||
data load_categorical_data_csv(char *filename, int target, int k);
|
||||
void normalize_data_rows(data d);
|
||||
void scale_data_rows(data d, float s);
|
||||
void translate_data_rows(data d, float s);
|
||||
void randomize_data(data d);
|
||||
data *split_data(data d, int part, int total);
|
||||
|
||||
|
72
src/detection_layer.c
Normal file
72
src/detection_layer.c
Normal file
@ -0,0 +1,72 @@
|
||||
int detection_out_height(detection_layer layer)
|
||||
{
|
||||
return layer.size + layer.h*layer.stride;
|
||||
}
|
||||
|
||||
int detection_out_width(detection_layer layer)
|
||||
{
|
||||
return layer.size + layer.w*layer.stride;
|
||||
}
|
||||
|
||||
detection_layer *make_detection_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
|
||||
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->n = n;
|
||||
layer->batch = batch;
|
||||
layer->stride = stride;
|
||||
layer->size = size;
|
||||
assert(c%n == 0);
|
||||
|
||||
layer->filters = calloc(c*size*size, sizeof(float));
|
||||
layer->filter_updates = calloc(c*size*size, sizeof(float));
|
||||
layer->filter_momentum = calloc(c*size*size, sizeof(float));
|
||||
|
||||
float scale = 1./(size*size*c);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
|
||||
|
||||
int out_h = detection_out_height(*layer);
|
||||
int out_w = detection_out_width(*layer);
|
||||
|
||||
layer->output = calloc(layer->batch * out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch * out_h * out_w * n, sizeof(float));
|
||||
|
||||
layer->activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
srand(0);
|
||||
|
||||
return layer;
|
||||
}
|
||||
|
||||
void forward_detection_layer(const detection_layer layer, float *in)
|
||||
{
|
||||
int out_h = detection_out_height(layer);
|
||||
int out_w = detection_out_width(layer);
|
||||
int i,j,fh, fw,c;
|
||||
memset(layer.output, 0, layer->batch*layer->n*out_h*out_w*sizeof(float));
|
||||
for(c = 0; c < layer.c; ++c){
|
||||
for(i = 0; i < layer.h; ++i){
|
||||
for(j = 0; j < layer.w; ++j){
|
||||
float val = layer->input[j+(i + c*layer.h)*layer.w];
|
||||
for(fh = 0; fh < layer.size; ++fh){
|
||||
for(fw = 0; fw < layer.size; ++fw){
|
||||
int h = i*layer.stride + fh;
|
||||
int w = j*layer.stride + fw;
|
||||
layer.output[w+(h+c/n*out_h)*out_w] += val*layer->filters[fw+(fh+c*layer.size)*layer.size];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void backward_detection_layer(const detection_layer layer, float *delta)
|
||||
{
|
||||
}
|
||||
|
||||
|
40
src/detection_layer.h
Normal file
40
src/detection_layer.h
Normal file
@ -0,0 +1,40 @@
|
||||
#ifndef DETECTION_LAYER_H
|
||||
#define DETECTION_LAYER_H
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int n;
|
||||
int size;
|
||||
int stride;
|
||||
|
||||
float *filters;
|
||||
float *filter_updates;
|
||||
float *filter_momentum;
|
||||
|
||||
float *biases;
|
||||
float *bias_updates;
|
||||
float *bias_momentum;
|
||||
|
||||
float *col_image;
|
||||
float *delta;
|
||||
float *output;
|
||||
|
||||
#ifdef GPU
|
||||
cl_mem filters_cl;
|
||||
cl_mem filter_updates_cl;
|
||||
cl_mem filter_momentum_cl;
|
||||
|
||||
cl_mem biases_cl;
|
||||
cl_mem bias_updates_cl;
|
||||
cl_mem bias_momentum_cl;
|
||||
|
||||
cl_mem col_image_cl;
|
||||
cl_mem delta_cl;
|
||||
cl_mem output_cl;
|
||||
#endif
|
||||
|
||||
ACTIVATION activation;
|
||||
} convolutional_layer;
|
||||
|
||||
#endif
|
@ -27,8 +27,8 @@ __kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
int brow = i + sub_row;
|
||||
int bcol = col_block*BLOCK + sub_col;
|
||||
|
||||
Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol];
|
||||
Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol];
|
||||
if(arow < M && acol < K)Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol];
|
||||
if(brow < K && bcol < N)Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
|
32
src/im2col.c
32
src/im2col.c
@ -1,27 +1,45 @@
|
||||
#include "mini_blas.h"
|
||||
|
||||
inline float im2col_get_pixel(float *im, int height, int width, int channels,
|
||||
int row, int col, int channel, int pad)
|
||||
{
|
||||
row -= pad;
|
||||
col -= pad;
|
||||
|
||||
if (row < 0 || col < 0 ||
|
||||
row >= height || col >= width) return 0;
|
||||
return im[col + width*(row + channel*height)];
|
||||
}
|
||||
|
||||
//From Berkeley Vision's Caffe!
|
||||
//https://github.com/BVLC/caffe/blob/master/LICENSE
|
||||
void im2col_cpu(float* data_im,
|
||||
const int batch, const int channels, const int height, const int width,
|
||||
const int ksize, const int stride, float* data_col)
|
||||
const int ksize, const int stride, int pad, float* data_col)
|
||||
{
|
||||
int c,h,w,b;
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
if (pad){
|
||||
height_col = 1 + (height-1) / stride;
|
||||
width_col = 1 + (width-1) / stride;
|
||||
pad = ksize/2;
|
||||
}
|
||||
int channels_col = channels * ksize * ksize;
|
||||
int im_size = height*width*channels;
|
||||
int col_size = height_col*width_col*channels_col;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for ( c = 0; c < channels_col; ++c) {
|
||||
for (b = 0; b < batch; ++b) {
|
||||
for (c = 0; c < channels_col; ++c) {
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
for ( h = 0; h < height_col; ++h) {
|
||||
for ( w = 0; w < width_col; ++w) {
|
||||
for (h = 0; h < height_col; ++h) {
|
||||
for (w = 0; w < width_col; ++w) {
|
||||
int im_row = h_offset + h * stride;
|
||||
int im_col = w_offset + w * stride;
|
||||
data_col[(c * height_col + h) * width_col + w] =
|
||||
data_im[(c_im * height + h * stride + h_offset) * width
|
||||
+ w * stride + w_offset];
|
||||
im2col_get_pixel(data_im, height, width, channels,
|
||||
im_row, im_col, c_im, pad);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -19,7 +19,6 @@ image get_maxpool_delta(maxpool_layer layer)
|
||||
|
||||
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride)
|
||||
{
|
||||
c = c*batch;
|
||||
fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d stride\n", h,w,c,stride);
|
||||
maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
|
||||
layer->batch = batch;
|
||||
@ -27,8 +26,8 @@ maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride)
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->stride = stride;
|
||||
layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(float));
|
||||
layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c, sizeof(float));
|
||||
layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
|
||||
layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
|
||||
return layer;
|
||||
}
|
||||
|
||||
@ -37,22 +36,30 @@ void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
|
||||
layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
|
||||
layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch* sizeof(float));
|
||||
layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * layer->batch*sizeof(float));
|
||||
}
|
||||
|
||||
void forward_maxpool_layer(const maxpool_layer layer, float *in)
|
||||
{
|
||||
image input = float_to_image(layer.h, layer.w, layer.c, in);
|
||||
image output = get_maxpool_image(layer);
|
||||
int i,j,k;
|
||||
for(i = 0; i < output.h*output.w*output.c; ++i) output.data[i] = -DBL_MAX;
|
||||
for(k = 0; k < input.c; ++k){
|
||||
for(i = 0; i < input.h; ++i){
|
||||
for(j = 0; j < input.w; ++j){
|
||||
float val = get_pixel(input, i, j, k);
|
||||
float cur = get_pixel(output, i/layer.stride, j/layer.stride, k);
|
||||
if(val > cur) set_pixel(output, i/layer.stride, j/layer.stride, k, val);
|
||||
int b;
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
image input = float_to_image(layer.h, layer.w, layer.c, in+b*layer.h*layer.w*layer.c);
|
||||
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
image output = float_to_image(h,w,c,layer.output+b*h*w*c);
|
||||
|
||||
int i,j,k;
|
||||
for(i = 0; i < output.h*output.w*output.c; ++i) output.data[i] = -DBL_MAX;
|
||||
for(k = 0; k < input.c; ++k){
|
||||
for(i = 0; i < input.h; ++i){
|
||||
for(j = 0; j < input.w; ++j){
|
||||
float val = get_pixel(input, i, j, k);
|
||||
float cur = get_pixel(output, i/layer.stride, j/layer.stride, k);
|
||||
if(val > cur) set_pixel(output, i/layer.stride, j/layer.stride, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -60,21 +67,28 @@ void forward_maxpool_layer(const maxpool_layer layer, float *in)
|
||||
|
||||
void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta)
|
||||
{
|
||||
image input = float_to_image(layer.h, layer.w, layer.c, in);
|
||||
image input_delta = float_to_image(layer.h, layer.w, layer.c, delta);
|
||||
image output_delta = get_maxpool_delta(layer);
|
||||
image output = get_maxpool_image(layer);
|
||||
int i,j,k;
|
||||
for(k = 0; k < input.c; ++k){
|
||||
for(i = 0; i < input.h; ++i){
|
||||
for(j = 0; j < input.w; ++j){
|
||||
float val = get_pixel(input, i, j, k);
|
||||
float cur = get_pixel(output, i/layer.stride, j/layer.stride, k);
|
||||
float d = get_pixel(output_delta, i/layer.stride, j/layer.stride, k);
|
||||
if(val == cur) {
|
||||
set_pixel(input_delta, i, j, k, d);
|
||||
int b;
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
image input = float_to_image(layer.h, layer.w, layer.c, in+b*layer.h*layer.w*layer.c);
|
||||
image input_delta = float_to_image(layer.h, layer.w, layer.c, delta+b*layer.h*layer.w*layer.c);
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
image output = float_to_image(h,w,c,layer.output+b*h*w*c);
|
||||
image output_delta = float_to_image(h,w,c,layer.delta+b*h*w*c);
|
||||
|
||||
int i,j,k;
|
||||
for(k = 0; k < input.c; ++k){
|
||||
for(i = 0; i < input.h; ++i){
|
||||
for(j = 0; j < input.w; ++j){
|
||||
float val = get_pixel(input, i, j, k);
|
||||
float cur = get_pixel(output, i/layer.stride, j/layer.stride, k);
|
||||
float d = get_pixel(output_delta, i/layer.stride, j/layer.stride, k);
|
||||
if(val == cur) {
|
||||
set_pixel(input_delta, i, j, k, d);
|
||||
}
|
||||
else set_pixel(input_delta, i, j, k, 0);
|
||||
}
|
||||
else set_pixel(input_delta, i, j, k, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -17,28 +17,6 @@ void pm(int M, int N, float *A)
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
//This one might be too, can't remember.
|
||||
void col2im_cpu(float* data_col, const int channels,
|
||||
const int height, const int width, const int ksize, const int stride,
|
||||
float* data_im)
|
||||
{
|
||||
int c,h,w;
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
for ( c = 0; c < channels_col; ++c) {
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int c_im = c / ksize / ksize;
|
||||
for ( h = 0; h < height_col; ++h) {
|
||||
for ( w = 0; w < width_col; ++w) {
|
||||
data_im[(c_im * height + h * stride + h_offset) * width
|
||||
+ w * stride + w_offset]+= data_col[(c * height_col + h) * width_col + w];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float *random_matrix(int rows, int cols)
|
||||
{
|
||||
int i;
|
||||
|
@ -27,11 +27,11 @@ void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
||||
void im2col_cpu(float* data_im,
|
||||
const int batch, const int channels, const int height, const int width,
|
||||
const int ksize, const int stride, float* data_col);
|
||||
const int ksize, const int stride, int pad, float* data_col);
|
||||
|
||||
void col2im_cpu(float* data_col, const int channels,
|
||||
const int height, const int width, const int ksize, const int stride,
|
||||
float* data_im);
|
||||
void col2im_cpu(float* data_col,
|
||||
const int batch, const int channels, const int height, const int width,
|
||||
const int ksize, const int stride, int pad, float* data_im);
|
||||
void test_blas();
|
||||
|
||||
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
112
src/network.c
112
src/network.c
@ -113,10 +113,9 @@ void save_network(network net, char *filename)
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
void forward_network(network net, float *input, int train)
|
||||
{
|
||||
int i;
|
||||
#ifdef GPU
|
||||
cl_setup();
|
||||
size_t size = get_network_input_size(net);
|
||||
if(!net.input_cl){
|
||||
@ -126,16 +125,12 @@ void forward_network(network net, float *input, int train)
|
||||
}
|
||||
cl_write_array(net.input_cl, input, size);
|
||||
cl_mem input_cl = net.input_cl;
|
||||
#endif
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
#ifdef GPU
|
||||
forward_convolutional_layer_gpu(layer, input_cl);
|
||||
input_cl = layer.output_cl;
|
||||
#else
|
||||
forward_convolutional_layer(layer, input);
|
||||
#endif
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
@ -161,6 +156,41 @@ void forward_network(network net, float *input, int train)
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void forward_network(network net, float *input, int train)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer(layer, input, train);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
forward_maxpool_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
forward_normalization_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void update_network(network net, float step, float momentum, float decay)
|
||||
{
|
||||
int i;
|
||||
@ -238,9 +268,10 @@ float calculate_error_network(network net, float *truth)
|
||||
float sum = 0;
|
||||
float *delta = get_network_delta(net);
|
||||
float *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
//printf("%f, ", out[i]);
|
||||
int i;
|
||||
for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
|
||||
//if(i %get_network_output_size(net) == 0) printf("\n");
|
||||
//printf("%5.2f %5.2f, ", out[i], truth[i]);
|
||||
delta[i] = truth[i] - out[i];
|
||||
sum += delta[i]*delta[i];
|
||||
}
|
||||
@ -305,20 +336,38 @@ float train_network_datum(network net, float *x, float *y, float step, float mom
|
||||
|
||||
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
int i;
|
||||
float error = 0;
|
||||
int correct = 0;
|
||||
int pos = 0;
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i,j;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
for(j = 0; j < batch; ++j){
|
||||
int index = rand()%d.X.rows;
|
||||
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
||||
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
||||
}
|
||||
float err = train_network_datum(net, X, y, step, momentum, decay);
|
||||
sum += err;
|
||||
//train_network_datum(net, X, y, step, momentum, decay);
|
||||
/*
|
||||
float *y = d.y.vals[index];
|
||||
int class = get_predicted_class_network(net);
|
||||
correct += (y[class]?1:0);
|
||||
if(y[1]){
|
||||
error += err;
|
||||
++pos;
|
||||
*/
|
||||
|
||||
/*
|
||||
for(j = 0; j < d.y.cols*batch; ++j){
|
||||
printf("%6.3f ", y[j]);
|
||||
}
|
||||
printf("\n");
|
||||
for(j = 0; j < d.y.cols*batch; ++j){
|
||||
printf("%6.3f ", get_network_output(net)[j]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("\n");
|
||||
*/
|
||||
|
||||
|
||||
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
||||
@ -327,7 +376,9 @@ float train_network_sgd(network net, data d, int n, float step, float momentum,f
|
||||
//}
|
||||
}
|
||||
//printf("Accuracy: %f\n",(float) correct/n);
|
||||
return error/pos;
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
@ -448,7 +499,7 @@ int get_network_output_size(network net)
|
||||
|
||||
int get_network_input_size(network net)
|
||||
{
|
||||
return get_network_output_size_layer(net, 0);
|
||||
return get_network_input_size_layer(net, 0);
|
||||
}
|
||||
|
||||
image get_network_image_layer(network net, int i)
|
||||
@ -505,15 +556,24 @@ float *network_predict(network net, float *input)
|
||||
|
||||
matrix network_predict_data(network net, data test)
|
||||
{
|
||||
int i,j;
|
||||
int i,j,b;
|
||||
int k = get_network_output_size(net);
|
||||
matrix pred = make_matrix(test.X.rows, k);
|
||||
for(i = 0; i < test.X.rows; ++i){
|
||||
float *out = network_predict(net, test.X.vals[i]);
|
||||
for(j = 0; j < k; ++j){
|
||||
pred.vals[i][j] = out[j];
|
||||
float *X = calloc(net.batch*test.X.rows, sizeof(float));
|
||||
for(i = 0; i < test.X.rows; i += net.batch){
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
||||
}
|
||||
float *out = network_predict(net, X);
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
for(j = 0; j < k; ++j){
|
||||
pred.vals[i+b][j] = out[j+b*k];
|
||||
}
|
||||
}
|
||||
}
|
||||
free(X);
|
||||
return pred;
|
||||
}
|
||||
|
||||
|
20
src/opencl.c
20
src/opencl.c
@ -32,7 +32,8 @@ cl_info cl_init()
|
||||
if(num_devices > MAX_DEVICES) num_devices = MAX_DEVICES;
|
||||
int index = getpid()%num_devices;
|
||||
printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
|
||||
info.device = devices[index];
|
||||
//info.device = devices[index];
|
||||
info.device = devices[1];
|
||||
fprintf(stderr, "Found %d device(s)\n", num_devices);
|
||||
check_error(info);
|
||||
|
||||
@ -102,4 +103,21 @@ void cl_write_array(cl_mem mem, float *x, int n)
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void cl_copy_array(cl_mem src, cl_mem dst, int n)
|
||||
{
|
||||
cl_setup();
|
||||
clEnqueueCopyBuffer(cl.queue, src, dst, 0, 0, sizeof(float)*n,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
cl_mem cl_make_array(float *x, int n)
|
||||
{
|
||||
cl_setup();
|
||||
cl_mem mem = clCreateBuffer(cl.context,
|
||||
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
|
||||
sizeof(float)*n, x, &cl.error);
|
||||
check_error(cl);
|
||||
return mem;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -23,5 +23,7 @@ void check_error(cl_info info);
|
||||
cl_kernel get_kernel(char *filename, char *kernelname, char *options);
|
||||
void cl_read_array(cl_mem mem, float *x, int n);
|
||||
void cl_write_array(cl_mem mem, float *x, int n);
|
||||
cl_mem cl_make_array(float *x, int n);
|
||||
void cl_copy_array(cl_mem src, cl_mem dst, int n);
|
||||
#endif
|
||||
#endif
|
||||
|
@ -48,6 +48,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
int pad = option_find_int(options, "pad",0);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
@ -62,7 +63,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
|
||||
convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride,pad,activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
|
Loading…
Reference in New Issue
Block a user