mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Trying some stuff w/ dropout
This commit is contained in:
@ -28,25 +28,16 @@ network make_network(int n, int batch)
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
void forward_network(network net, float *input, int train)
|
||||
void forward_network_gpu(network net, cl_mem input_cl, int train)
|
||||
{
|
||||
cl_setup();
|
||||
size_t size = get_network_input_size(net);
|
||||
if(!net.input_cl){
|
||||
net.input_cl = clCreateBuffer(cl.context,
|
||||
CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
|
||||
check_error(cl);
|
||||
}
|
||||
cl_write_array(net.input_cl, input, size);
|
||||
cl_mem input_cl = net.input_cl;
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer_gpu(layer, input_cl);
|
||||
input_cl = layer.output_cl;
|
||||
input = layer.output;
|
||||
}
|
||||
/*
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer(layer, input, train);
|
||||
@ -72,10 +63,11 @@ void forward_network(network net, float *input, int train)
|
||||
forward_normalization_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
#endif
|
||||
|
||||
void forward_network(network net, float *input, int train)
|
||||
{
|
||||
@ -118,7 +110,6 @@ void forward_network(network net, float *input, int train)
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void update_network(network net)
|
||||
{
|
||||
@ -275,45 +266,13 @@ float train_network_sgd(network net, data d, int n)
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i,j;
|
||||
int i;
|
||||
float sum = 0;
|
||||
int index = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
for(j = 0; j < batch; ++j){
|
||||
index = rand()%d.X.rows;
|
||||
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
||||
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
||||
}
|
||||
|
||||
get_batch(d, batch, X, y);
|
||||
float err = train_network_datum(net, X, y);
|
||||
sum += err;
|
||||
//train_network_datum(net, X, y);
|
||||
/*
|
||||
float *y = d.y.vals[index];
|
||||
int class = get_predicted_class_network(net);
|
||||
correct += (y[class]?1:0);
|
||||
*/
|
||||
|
||||
/*
|
||||
for(j = 0; j < d.y.cols*batch; ++j){
|
||||
printf("%6.3f ", y[j]);
|
||||
}
|
||||
printf("\n");
|
||||
for(j = 0; j < d.y.cols*batch; ++j){
|
||||
printf("%6.3f ", get_network_output(net)[j]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("\n");
|
||||
*/
|
||||
|
||||
|
||||
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
||||
//if((i+1)%10 == 0){
|
||||
// printf("%d: %f\n", (i+1), (float)correct/(i+1));
|
||||
//}
|
||||
}
|
||||
//printf("Accuracy: %f\n",(float) correct/n);
|
||||
//show_image(float_to_image(32,32,3,X), "Orig");
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
|
Reference in New Issue
Block a user