mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Refactored connected to use blas
This commit is contained in:
3
Makefile
3
Makefile
@ -1,5 +1,5 @@
|
|||||||
CC=gcc
|
CC=gcc
|
||||||
GPU=1
|
GPU=0
|
||||||
COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
||||||
ifeq ($(GPU), 1)
|
ifeq ($(GPU), 1)
|
||||||
COMMON+=-DGPU
|
COMMON+=-DGPU
|
||||||
@ -7,6 +7,7 @@ else
|
|||||||
endif
|
endif
|
||||||
UNAME = $(shell uname)
|
UNAME = $(shell uname)
|
||||||
OPTS=-Ofast -flto
|
OPTS=-Ofast -flto
|
||||||
|
OPTS=-Ofast -flto
|
||||||
ifeq ($(UNAME), Darwin)
|
ifeq ($(UNAME), Darwin)
|
||||||
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||||
ifeq ($(GPU), 1)
|
ifeq ($(GPU), 1)
|
||||||
|
@ -916,8 +916,8 @@ int main(int argc, char *argv[])
|
|||||||
//test_ensemble();
|
//test_ensemble();
|
||||||
//test_nist_single();
|
//test_nist_single();
|
||||||
//test_nist();
|
//test_nist();
|
||||||
//train_nist();
|
train_nist();
|
||||||
test_convolutional_layer();
|
//test_convolutional_layer();
|
||||||
//test_col2im();
|
//test_col2im();
|
||||||
//test_cifar10();
|
//test_cifar10();
|
||||||
//train_cifar10();
|
//train_cifar10();
|
||||||
|
@ -26,7 +26,6 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
|||||||
|
|
||||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||||
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||||
layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
|
|
||||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||||
float scale = 1./inputs;
|
float scale = 1./inputs;
|
||||||
scale = .05;
|
scale = .05;
|
||||||
@ -35,7 +34,6 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
|||||||
|
|
||||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||||
//layer->bias_adapt = calloc(outputs, sizeof(float));
|
//layer->bias_adapt = calloc(outputs, sizeof(float));
|
||||||
layer->bias_momentum = calloc(outputs, sizeof(float));
|
|
||||||
layer->biases = calloc(outputs, sizeof(float));
|
layer->biases = calloc(outputs, sizeof(float));
|
||||||
for(i = 0; i < outputs; ++i){
|
for(i = 0; i < outputs; ++i){
|
||||||
//layer->biases[i] = rand_normal()*scale + scale;
|
//layer->biases[i] = rand_normal()*scale + scale;
|
||||||
@ -50,24 +48,19 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
|||||||
|
|
||||||
void update_connected_layer(connected_layer layer)
|
void update_connected_layer(connected_layer layer)
|
||||||
{
|
{
|
||||||
int i;
|
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||||
for(i = 0; i < layer.outputs; ++i){
|
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
|
||||||
layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i];
|
|
||||||
layer.biases[i] += layer.bias_momentum[i];
|
scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
|
||||||
}
|
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
|
||||||
for(i = 0; i < layer.outputs*layer.inputs; ++i){
|
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
|
||||||
layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i];
|
|
||||||
layer.weights[i] += layer.weight_momentum[i];
|
|
||||||
}
|
|
||||||
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
|
|
||||||
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void forward_connected_layer(connected_layer layer, float *input)
|
void forward_connected_layer(connected_layer layer, float *input)
|
||||||
{
|
{
|
||||||
int i;
|
int i;
|
||||||
for(i = 0; i < layer.batch; ++i){
|
for(i = 0; i < layer.batch; ++i){
|
||||||
memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float));
|
copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
|
||||||
}
|
}
|
||||||
int m = layer.batch;
|
int m = layer.batch;
|
||||||
int k = layer.inputs;
|
int k = layer.inputs;
|
||||||
@ -82,8 +75,8 @@ void forward_connected_layer(connected_layer layer, float *input)
|
|||||||
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||||
{
|
{
|
||||||
int i;
|
int i;
|
||||||
|
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
|
||||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
|
||||||
layer.bias_updates[i%layer.outputs] += layer.delta[i];
|
layer.bias_updates[i%layer.outputs] += layer.delta[i];
|
||||||
}
|
}
|
||||||
int m = layer.inputs;
|
int m = layer.inputs;
|
||||||
|
@ -21,9 +21,6 @@ typedef struct{
|
|||||||
float *weight_adapt;
|
float *weight_adapt;
|
||||||
float *bias_adapt;
|
float *bias_adapt;
|
||||||
|
|
||||||
float *weight_momentum;
|
|
||||||
float *bias_momentum;
|
|
||||||
|
|
||||||
float *output;
|
float *output;
|
||||||
float *delta;
|
float *delta;
|
||||||
|
|
||||||
|
@ -229,6 +229,8 @@ float *get_network_output_layer(network net, int i)
|
|||||||
return layer.output;
|
return layer.output;
|
||||||
} else if(net.types[i] == DROPOUT){
|
} else if(net.types[i] == DROPOUT){
|
||||||
return get_network_output_layer(net, i-1);
|
return get_network_output_layer(net, i-1);
|
||||||
|
} else if(net.types[i] == FREEWEIGHT){
|
||||||
|
return get_network_output_layer(net, i-1);
|
||||||
} else if(net.types[i] == CONNECTED){
|
} else if(net.types[i] == CONNECTED){
|
||||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||||
return layer.output;
|
return layer.output;
|
||||||
@ -258,6 +260,8 @@ float *get_network_delta_layer(network net, int i)
|
|||||||
return layer.delta;
|
return layer.delta;
|
||||||
} else if(net.types[i] == DROPOUT){
|
} else if(net.types[i] == DROPOUT){
|
||||||
return get_network_delta_layer(net, i-1);
|
return get_network_delta_layer(net, i-1);
|
||||||
|
} else if(net.types[i] == FREEWEIGHT){
|
||||||
|
return get_network_delta_layer(net, i-1);
|
||||||
} else if(net.types[i] == CONNECTED){
|
} else if(net.types[i] == CONNECTED){
|
||||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||||
return layer.delta;
|
return layer.delta;
|
||||||
@ -424,6 +428,10 @@ int get_network_input_size_layer(network net, int i)
|
|||||||
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
||||||
return layer.inputs;
|
return layer.inputs;
|
||||||
}
|
}
|
||||||
|
else if(net.types[i] == FREEWEIGHT){
|
||||||
|
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
|
||||||
|
return layer.inputs;
|
||||||
|
}
|
||||||
else if(net.types[i] == SOFTMAX){
|
else if(net.types[i] == SOFTMAX){
|
||||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||||
return layer.inputs;
|
return layer.inputs;
|
||||||
@ -451,6 +459,10 @@ int get_network_output_size_layer(network net, int i)
|
|||||||
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
||||||
return layer.inputs;
|
return layer.inputs;
|
||||||
}
|
}
|
||||||
|
else if(net.types[i] == FREEWEIGHT){
|
||||||
|
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
|
||||||
|
return layer.inputs;
|
||||||
|
}
|
||||||
else if(net.types[i] == SOFTMAX){
|
else if(net.types[i] == SOFTMAX){
|
||||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||||
return layer.inputs;
|
return layer.inputs;
|
||||||
|
Reference in New Issue
Block a user