mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Convolutional working on GPU
This commit is contained in:
@@ -195,13 +195,14 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
b = layer.delta;
|
||||
c = layer.col_image;
|
||||
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
b += k*n;
|
||||
c += m*n;
|
||||
}
|
||||
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
|
||||
col2im_cpu(layer.col_image, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
|
||||
}
|
||||
}
|
||||
@@ -361,7 +362,7 @@ void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
|
||||
clReleaseMemObject(c);
|
||||
}
|
||||
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
|
||||
cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
|
||||
//cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
|
||||
@@ -384,9 +385,7 @@ void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl
|
||||
clReleaseMemObject(a);
|
||||
clReleaseMemObject(b);
|
||||
}
|
||||
cl_read_array(layer.filter_updates_cl, layer.filter_updates, m*n);
|
||||
cl_read_array(layer.bias_updates_cl, layer.bias_updates, m);
|
||||
|
||||
//cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
|
||||
|
||||
if(delta_cl){
|
||||
m = layer.size*layer.size*layer.c;
|
||||
@@ -395,17 +394,31 @@ void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl
|
||||
convolutional_out_width(layer);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
a = layer.filters_cl;
|
||||
b = cl_sub_array(layer.delta_cl, i*k*n, k*n);
|
||||
c = cl_sub_array(layer.col_image_cl, i*m*n, m*n);
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = cl_sub_array(layer.delta_cl, i*k*n, k*n);
|
||||
cl_mem c = cl_sub_array(layer.col_image_cl, i*m*n, m*n);
|
||||
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
clReleaseMemObject(b);
|
||||
clReleaseMemObject(c);
|
||||
}
|
||||
col2im_gpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
||||
|
||||
scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
|
||||
col2im_ongpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
|
||||
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
|
||||
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
Reference in New Issue
Block a user