mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Convolutional working on GPU
This commit is contained in:
127
src/network.c
127
src/network.c
@ -8,7 +8,9 @@
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "freeweight_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
|
||||
@ -28,14 +30,18 @@ network make_network(int n, int batch)
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
void forward_network_gpu(network net, cl_mem input_cl, int train)
|
||||
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer_gpu(layer, input_cl);
|
||||
input_cl = layer.output_cl;
|
||||
forward_convolutional_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
forward_cost_layer_gpu(layer, input, truth);
|
||||
}
|
||||
/*
|
||||
else if(net.types[i] == CONNECTED){
|
||||
@ -67,9 +73,75 @@ void forward_network_gpu(network net, cl_mem input_cl, int train)
|
||||
}
|
||||
}
|
||||
|
||||
void backward_network_gpu(network net, cl_mem input)
|
||||
{
|
||||
int i;
|
||||
cl_mem prev_input;
|
||||
cl_mem prev_delta;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
if(i == 0){
|
||||
prev_input = input;
|
||||
prev_delta = 0;
|
||||
}else{
|
||||
prev_input = get_network_output_cl_layer(net, i-1);
|
||||
prev_delta = get_network_delta_cl_layer(net, i-1);
|
||||
}
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
backward_convolutional_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_network_gpu(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer_gpu(layer);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cl_mem get_network_output_cl_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void forward_network(network net, float *input, int train)
|
||||
void forward_network(network net, float *input, float *truth, int train)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
@ -88,6 +160,10 @@ void forward_network(network net, float *input, int train)
|
||||
forward_crop_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
forward_cost_layer(layer, input, truth);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer(layer, input);
|
||||
@ -108,6 +184,11 @@ void forward_network(network net, float *input, int train)
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
forward_dropout_layer(layer, input);
|
||||
}
|
||||
else if(net.types[i] == FREEWEIGHT){
|
||||
if(!train) continue;
|
||||
freeweight_layer layer = *(freeweight_layer *)net.layers[i];
|
||||
forward_freeweight_layer(layer, input);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -159,7 +240,9 @@ float *get_network_output_layer(network net, int i)
|
||||
}
|
||||
float *get_network_output(network net)
|
||||
{
|
||||
return get_network_output_layer(net, net.n-1);
|
||||
int i;
|
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
||||
return get_network_output_layer(net, i);
|
||||
}
|
||||
|
||||
float *get_network_delta_layer(network net, int i)
|
||||
@ -182,6 +265,14 @@ float *get_network_delta_layer(network net, int i)
|
||||
return 0;
|
||||
}
|
||||
|
||||
float get_network_cost(network net)
|
||||
{
|
||||
if(net.types[net.n-1] == COST){
|
||||
return ((cost_layer *)net.layers[net.n-1])->output[0];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float *get_network_delta(network net)
|
||||
{
|
||||
return get_network_delta_layer(net, net.n-1);
|
||||
@ -212,9 +303,8 @@ int get_predicted_class_network(network net)
|
||||
return max_index(out, k);
|
||||
}
|
||||
|
||||
float backward_network(network net, float *input, float *truth)
|
||||
void backward_network(network net, float *input)
|
||||
{
|
||||
float error = calculate_error_network(net, truth);
|
||||
int i;
|
||||
float *prev_input;
|
||||
float *prev_delta;
|
||||
@ -246,15 +336,19 @@ float backward_network(network net, float *input, float *truth)
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
backward_connected_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
}
|
||||
return error;
|
||||
}
|
||||
|
||||
float train_network_datum(network net, float *x, float *y)
|
||||
{
|
||||
forward_network(net, x, 1);
|
||||
forward_network(net, x, y, 1);
|
||||
//int class = get_predicted_class_network(net);
|
||||
float error = backward_network(net, x, y);
|
||||
backward_network(net, x);
|
||||
float error = get_network_cost(net);
|
||||
update_network(net);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
@ -287,8 +381,9 @@ float train_network_batch(network net, data d, int n)
|
||||
int index = rand()%d.X.rows;
|
||||
float *x = d.X.vals[index];
|
||||
float *y = d.y.vals[index];
|
||||
forward_network(net, x, 1);
|
||||
sum += backward_network(net, x, y);
|
||||
forward_network(net, x, y, 1);
|
||||
backward_network(net, x);
|
||||
sum += get_network_cost(net);
|
||||
}
|
||||
update_network(net);
|
||||
}
|
||||
@ -351,7 +446,8 @@ int get_network_output_size_layer(network net, int i)
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.outputs;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
||||
return layer.inputs;
|
||||
}
|
||||
@ -396,7 +492,8 @@ int resize_network(network net, int h, int w, int c)
|
||||
|
||||
int get_network_output_size(network net)
|
||||
{
|
||||
int i = net.n-1;
|
||||
int i;
|
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
||||
return get_network_output_size_layer(net, i);
|
||||
}
|
||||
|
||||
@ -457,7 +554,7 @@ void visualize_network(network net)
|
||||
|
||||
float *network_predict(network net, float *input)
|
||||
{
|
||||
forward_network(net, input, 0);
|
||||
forward_network(net, input, 0, 0);
|
||||
float *out = get_network_output(net);
|
||||
return out;
|
||||
}
|
||||
|
Reference in New Issue
Block a user