mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Convolutional working on GPU
This commit is contained in:
81
src/parser.c
81
src/parser.c
@ -5,12 +5,14 @@
|
||||
#include "parser.h"
|
||||
#include "activations.h"
|
||||
#include "crop_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "freeweight_layer.h"
|
||||
#include "list.h"
|
||||
#include "option_list.h"
|
||||
#include "utils.h"
|
||||
@ -24,8 +26,10 @@ int is_convolutional(section *s);
|
||||
int is_connected(section *s);
|
||||
int is_maxpool(section *s);
|
||||
int is_dropout(section *s);
|
||||
int is_freeweight(section *s);
|
||||
int is_softmax(section *s);
|
||||
int is_crop(section *s);
|
||||
int is_cost(section *s);
|
||||
int is_normalization(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
@ -182,6 +186,20 @@ softmax_layer *parse_softmax(list *options, network *net, int count)
|
||||
return layer;
|
||||
}
|
||||
|
||||
cost_layer *parse_cost(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
cost_layer *layer = make_cost_layer(net->batch, input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
crop_layer *parse_crop(list *options, network *net, int count)
|
||||
{
|
||||
float learning_rate, momentum, decay;
|
||||
@ -234,6 +252,20 @@ maxpool_layer *parse_maxpool(list *options, network *net, int count)
|
||||
return layer;
|
||||
}
|
||||
|
||||
freeweight_layer *parse_freeweight(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
freeweight_layer *layer = make_freeweight_layer(net->batch,input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
dropout_layer *parse_dropout(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
@ -295,6 +327,10 @@ network parse_network_cfg(char *filename)
|
||||
crop_layer *layer = parse_crop(options, &net, count);
|
||||
net.types[count] = CROP;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_cost(s)){
|
||||
cost_layer *layer = parse_cost(options, &net, count);
|
||||
net.types[count] = COST;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_softmax(s)){
|
||||
softmax_layer *layer = parse_softmax(options, &net, count);
|
||||
net.types[count] = SOFTMAX;
|
||||
@ -311,6 +347,10 @@ network parse_network_cfg(char *filename)
|
||||
dropout_layer *layer = parse_dropout(options, &net, count);
|
||||
net.types[count] = DROPOUT;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_freeweight(s)){
|
||||
freeweight_layer *layer = parse_freeweight(options, &net, count);
|
||||
net.types[count] = FREEWEIGHT;
|
||||
net.layers[count] = layer;
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
@ -328,6 +368,10 @@ int is_crop(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[crop]")==0);
|
||||
}
|
||||
int is_cost(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[cost]")==0);
|
||||
}
|
||||
int is_convolutional(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[conv]")==0
|
||||
@ -347,6 +391,10 @@ int is_dropout(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[dropout]")==0);
|
||||
}
|
||||
int is_freeweight(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[freeweight]")==0);
|
||||
}
|
||||
|
||||
int is_softmax(section *s)
|
||||
{
|
||||
@ -447,6 +495,25 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[freeweight]\n");
|
||||
if(count == 0){
|
||||
fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
|
||||
}
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[dropout]\n");
|
||||
if(count == 0){
|
||||
fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
}
|
||||
fprintf(fp, "probability=%g\n\n", l->probability);
|
||||
}
|
||||
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
||||
{
|
||||
int i;
|
||||
@ -526,6 +593,14 @@ void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[cost]\n");
|
||||
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
|
||||
void save_network(network net, char *filename)
|
||||
{
|
||||
FILE *fp = fopen(filename, "w");
|
||||
@ -541,10 +616,16 @@ void save_network(network net, char *filename)
|
||||
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == FREEWEIGHT)
|
||||
print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DROPOUT)
|
||||
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == NORMALIZATION)
|
||||
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == COST)
|
||||
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
Reference in New Issue
Block a user