Convolutional working on GPU

This commit is contained in:
Joseph Redmon
2014-10-13 00:29:01 -07:00
parent 76ee68f96d
commit 787d534560
21 changed files with 643 additions and 93 deletions

View File

@ -5,12 +5,14 @@
#include "parser.h"
#include "activations.h"
#include "crop_layer.h"
#include "cost_layer.h"
#include "convolutional_layer.h"
#include "connected_layer.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "freeweight_layer.h"
#include "list.h"
#include "option_list.h"
#include "utils.h"
@ -24,8 +26,10 @@ int is_convolutional(section *s);
int is_connected(section *s);
int is_maxpool(section *s);
int is_dropout(section *s);
int is_freeweight(section *s);
int is_softmax(section *s);
int is_crop(section *s);
int is_cost(section *s);
int is_normalization(section *s);
list *read_cfg(char *filename);
@ -182,6 +186,20 @@ softmax_layer *parse_softmax(list *options, network *net, int count)
return layer;
}
cost_layer *parse_cost(list *options, network *net, int count)
{
int input;
if(count == 0){
input = option_find_int(options, "input",1);
net->batch = option_find_int(options, "batch",1);
}else{
input = get_network_output_size_layer(*net, count-1);
}
cost_layer *layer = make_cost_layer(net->batch, input);
option_unused(options);
return layer;
}
crop_layer *parse_crop(list *options, network *net, int count)
{
float learning_rate, momentum, decay;
@ -234,6 +252,20 @@ maxpool_layer *parse_maxpool(list *options, network *net, int count)
return layer;
}
freeweight_layer *parse_freeweight(list *options, network *net, int count)
{
int input;
if(count == 0){
net->batch = option_find_int(options, "batch",1);
input = option_find_int(options, "input",1);
}else{
input = get_network_output_size_layer(*net, count-1);
}
freeweight_layer *layer = make_freeweight_layer(net->batch,input);
option_unused(options);
return layer;
}
dropout_layer *parse_dropout(list *options, network *net, int count)
{
int input;
@ -295,6 +327,10 @@ network parse_network_cfg(char *filename)
crop_layer *layer = parse_crop(options, &net, count);
net.types[count] = CROP;
net.layers[count] = layer;
}else if(is_cost(s)){
cost_layer *layer = parse_cost(options, &net, count);
net.types[count] = COST;
net.layers[count] = layer;
}else if(is_softmax(s)){
softmax_layer *layer = parse_softmax(options, &net, count);
net.types[count] = SOFTMAX;
@ -311,6 +347,10 @@ network parse_network_cfg(char *filename)
dropout_layer *layer = parse_dropout(options, &net, count);
net.types[count] = DROPOUT;
net.layers[count] = layer;
}else if(is_freeweight(s)){
freeweight_layer *layer = parse_freeweight(options, &net, count);
net.types[count] = FREEWEIGHT;
net.layers[count] = layer;
}else{
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
@ -328,6 +368,10 @@ int is_crop(section *s)
{
return (strcmp(s->type, "[crop]")==0);
}
int is_cost(section *s)
{
return (strcmp(s->type, "[cost]")==0);
}
int is_convolutional(section *s)
{
return (strcmp(s->type, "[conv]")==0
@ -347,6 +391,10 @@ int is_dropout(section *s)
{
return (strcmp(s->type, "[dropout]")==0);
}
int is_freeweight(section *s)
{
return (strcmp(s->type, "[freeweight]")==0);
}
int is_softmax(section *s)
{
@ -447,6 +495,25 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
fprintf(fp, "\n\n");
}
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
{
fprintf(fp, "[freeweight]\n");
if(count == 0){
fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
}
fprintf(fp, "\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{
fprintf(fp, "[dropout]\n");
if(count == 0){
fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
}
fprintf(fp, "probability=%g\n\n", l->probability);
}
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
{
int i;
@ -526,6 +593,14 @@ void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
fprintf(fp, "\n");
}
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
fprintf(fp, "[cost]\n");
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
fprintf(fp, "\n");
}
void save_network(network net, char *filename)
{
FILE *fp = fopen(filename, "w");
@ -541,10 +616,16 @@ void save_network(network net, char *filename)
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
else if(net.types[i] == MAXPOOL)
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
else if(net.types[i] == FREEWEIGHT)
print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
else if(net.types[i] == DROPOUT)
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
else if(net.types[i] == NORMALIZATION)
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
else if(net.types[i] == SOFTMAX)
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
else if(net.types[i] == COST)
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
}
fclose(fp);
}