mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Ensemble
This commit is contained in:
parent
4bdf96bd6a
commit
8c3694bc91
4
Makefile
4
Makefile
@ -1,12 +1,12 @@
|
|||||||
CC=gcc
|
CC=gcc
|
||||||
COMMON=-Wall `pkg-config --cflags opencv`
|
COMMON=-Wall `pkg-config --cflags opencv`
|
||||||
|
CFLAGS= $(COMMON) -O3 -ffast-math -flto
|
||||||
UNAME = $(shell uname)
|
UNAME = $(shell uname)
|
||||||
ifeq ($(UNAME), Darwin)
|
ifeq ($(UNAME), Darwin)
|
||||||
COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||||
else
|
else
|
||||||
COMMON += -march=native
|
CFLAGS += -march=native
|
||||||
endif
|
endif
|
||||||
CFLAGS= $(COMMON) -O3 -ffast-math -flto
|
|
||||||
#CFLAGS= $(COMMON) -O0 -g
|
#CFLAGS= $(COMMON) -O0 -g
|
||||||
LDFLAGS=`pkg-config --libs opencv` -lm
|
LDFLAGS=`pkg-config --libs opencv` -lm
|
||||||
VPATH=./src/
|
VPATH=./src/
|
||||||
|
12
src/data.c
12
src/data.c
@ -141,7 +141,7 @@ void normalize_data_rows(data d)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
data *cv_split_data(data d, int part, int total)
|
data *split_data(data d, int part, int total)
|
||||||
{
|
{
|
||||||
data *split = calloc(2, sizeof(data));
|
data *split = calloc(2, sizeof(data));
|
||||||
int i;
|
int i;
|
||||||
@ -155,6 +155,12 @@ data *cv_split_data(data d, int part, int total)
|
|||||||
train.X.rows = train.y.rows = d.X.rows - (end-start);
|
train.X.rows = train.y.rows = d.X.rows - (end-start);
|
||||||
train.X.cols = test.X.cols = d.X.cols;
|
train.X.cols = test.X.cols = d.X.cols;
|
||||||
train.y.cols = test.y.cols = d.y.cols;
|
train.y.cols = test.y.cols = d.y.cols;
|
||||||
|
|
||||||
|
train.X.vals = calloc(train.X.rows, sizeof(double*));
|
||||||
|
test.X.vals = calloc(test.X.rows, sizeof(double*));
|
||||||
|
train.y.vals = calloc(train.y.rows, sizeof(double*));
|
||||||
|
test.y.vals = calloc(test.y.rows, sizeof(double*));
|
||||||
|
|
||||||
for(i = 0; i < start; ++i){
|
for(i = 0; i < start; ++i){
|
||||||
train.X.vals[i] = d.X.vals[i];
|
train.X.vals[i] = d.X.vals[i];
|
||||||
train.y.vals[i] = d.y.vals[i];
|
train.y.vals[i] = d.y.vals[i];
|
||||||
@ -164,8 +170,8 @@ data *cv_split_data(data d, int part, int total)
|
|||||||
test.y.vals[i-start] = d.y.vals[i];
|
test.y.vals[i-start] = d.y.vals[i];
|
||||||
}
|
}
|
||||||
for(i = end; i < d.X.rows; ++i){
|
for(i = end; i < d.X.rows; ++i){
|
||||||
train.X.vals[i-(start-end)] = d.X.vals[i];
|
train.X.vals[i-(end-start)] = d.X.vals[i];
|
||||||
train.y.vals[i-(start-end)] = d.y.vals[i];
|
train.y.vals[i-(end-start)] = d.y.vals[i];
|
||||||
}
|
}
|
||||||
split[0] = train;
|
split[0] = train;
|
||||||
split[1] = test;
|
split[1] = test;
|
||||||
|
@ -19,6 +19,6 @@ data load_data_image_pathfile_random(char *filename, int n, char **labels, int k
|
|||||||
data load_categorical_data_csv(char *filename, int target, int k);
|
data load_categorical_data_csv(char *filename, int target, int k);
|
||||||
void normalize_data_rows(data d);
|
void normalize_data_rows(data d);
|
||||||
void randomize_data(data d);
|
void randomize_data(data d);
|
||||||
data *cv_split_data(data d, int part, int total);
|
data *split_data(data d, int part, int total);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
18
src/matrix.c
18
src/matrix.c
@ -13,6 +13,18 @@ void free_matrix(matrix m)
|
|||||||
free(m.vals);
|
free(m.vals);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
double matrix_accuracy(matrix truth, matrix guess)
|
||||||
|
{
|
||||||
|
int k = truth.cols;
|
||||||
|
int i;
|
||||||
|
int count = 0;
|
||||||
|
for(i = 0; i < truth.rows; ++i){
|
||||||
|
int class = max_index(guess.vals[i], k);
|
||||||
|
if(truth.vals[i][class]) ++count;
|
||||||
|
}
|
||||||
|
return (double)count/truth.rows;
|
||||||
|
}
|
||||||
|
|
||||||
void matrix_add_matrix(matrix from, matrix to)
|
void matrix_add_matrix(matrix from, matrix to)
|
||||||
{
|
{
|
||||||
assert(from.rows == to.rows && from.cols == to.cols);
|
assert(from.rows == to.rows && from.cols == to.cols);
|
||||||
@ -26,12 +38,14 @@ void matrix_add_matrix(matrix from, matrix to)
|
|||||||
|
|
||||||
matrix make_matrix(int rows, int cols)
|
matrix make_matrix(int rows, int cols)
|
||||||
{
|
{
|
||||||
|
int i;
|
||||||
matrix m;
|
matrix m;
|
||||||
m.rows = rows;
|
m.rows = rows;
|
||||||
m.cols = cols;
|
m.cols = cols;
|
||||||
m.vals = calloc(m.rows, sizeof(double *));
|
m.vals = calloc(m.rows, sizeof(double *));
|
||||||
int i;
|
for(i = 0; i < m.rows; ++i){
|
||||||
for(i = 0; i < m.rows; ++i) m.vals[i] = calloc(m.cols, sizeof(double));
|
m.vals[i] = calloc(m.cols, sizeof(double));
|
||||||
|
}
|
||||||
return m;
|
return m;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -11,6 +11,8 @@ void print_matrix(matrix m);
|
|||||||
|
|
||||||
matrix csv_to_matrix(char *filename);
|
matrix csv_to_matrix(char *filename);
|
||||||
matrix hold_out_matrix(matrix *m, int n);
|
matrix hold_out_matrix(matrix *m, int n);
|
||||||
|
double matrix_accuracy(matrix truth, matrix guess);
|
||||||
|
void matrix_add_matrix(matrix from, matrix to);
|
||||||
|
|
||||||
double *pop_column(matrix *m, int c);
|
double *pop_column(matrix *m, int c);
|
||||||
|
|
||||||
|
@ -174,18 +174,18 @@ int train_network_datum(network net, double *x, double *y, double step, double m
|
|||||||
return (y[class]?1:0);
|
return (y[class]?1:0);
|
||||||
}
|
}
|
||||||
|
|
||||||
double train_network_sgd(network net, data d, double step, double momentum,double decay)
|
double train_network_sgd(network net, data d, int n, double step, double momentum,double decay)
|
||||||
{
|
{
|
||||||
int i;
|
int i;
|
||||||
int correct = 0;
|
int correct = 0;
|
||||||
for(i = 0; i < d.X.rows; ++i){
|
for(i = 0; i < n; ++i){
|
||||||
int index = rand()%d.X.rows;
|
int index = rand()%d.X.rows;
|
||||||
correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||||
if((i+1)%10 == 0){
|
//if((i+1)%10 == 0){
|
||||||
printf("%d: %f\n", (i+1), (double)correct/(i+1));
|
// printf("%d: %f\n", (i+1), (double)correct/(i+1));
|
||||||
|
//}
|
||||||
}
|
}
|
||||||
}
|
return (double)correct/n;
|
||||||
return (double)correct/d.X.rows;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void train_network(network net, data d, double step, double momentum, double decay)
|
void train_network(network net, data d, double step, double momentum, double decay)
|
||||||
@ -269,6 +269,27 @@ void visualize_network(network net)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
double *network_predict(network net, double *input)
|
||||||
|
{
|
||||||
|
forward_network(net, input);
|
||||||
|
double *out = get_network_output(net);
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
matrix network_predict_data(network net, data test)
|
||||||
|
{
|
||||||
|
int i,j;
|
||||||
|
int k = get_network_output_size(net);
|
||||||
|
matrix pred = make_matrix(test.X.rows, k);
|
||||||
|
for(i = 0; i < test.X.rows; ++i){
|
||||||
|
double *out = network_predict(net, test.X.vals[i]);
|
||||||
|
for(j = 0; j < k; ++j){
|
||||||
|
pred.vals[i][j] = out[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return pred;
|
||||||
|
}
|
||||||
|
|
||||||
void print_network(network net)
|
void print_network(network net)
|
||||||
{
|
{
|
||||||
int i,j;
|
int i,j;
|
||||||
@ -306,17 +327,12 @@ void print_network(network net)
|
|||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
double network_accuracy(network net, data d)
|
double network_accuracy(network net, data d)
|
||||||
{
|
{
|
||||||
int i;
|
matrix guess = network_predict_data(net, d);
|
||||||
int correct = 0;
|
double acc = matrix_accuracy(d.y, guess);
|
||||||
int k = get_network_output_size(net);
|
free_matrix(guess);
|
||||||
for(i = 0; i < d.X.rows; ++i){
|
return acc;
|
||||||
forward_network(net, d.X.vals[i]);
|
|
||||||
double *out = get_network_output(net);
|
|
||||||
int guess = max_index(out, k);
|
|
||||||
if(d.y.vals[i][guess]) ++correct;
|
|
||||||
}
|
|
||||||
return (double)correct/d.X.rows;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -24,8 +24,9 @@ network make_network(int n);
|
|||||||
void forward_network(network net, double *input);
|
void forward_network(network net, double *input);
|
||||||
void backward_network(network net, double *input, double *truth);
|
void backward_network(network net, double *input, double *truth);
|
||||||
void update_network(network net, double step, double momentum, double decay);
|
void update_network(network net, double step, double momentum, double decay);
|
||||||
double train_network_sgd(network net, data d, double step, double momentum,double decay);
|
double train_network_sgd(network net, data d, int n, double step, double momentum,double decay);
|
||||||
void train_network(network net, data d, double step, double momentum, double decay);
|
void train_network(network net, data d, double step, double momentum, double decay);
|
||||||
|
matrix network_predict_data(network net, data test);
|
||||||
double network_accuracy(network net, data d);
|
double network_accuracy(network net, data d);
|
||||||
double *get_network_output(network net);
|
double *get_network_output(network net);
|
||||||
double *get_network_output_layer(network net, int i);
|
double *get_network_output_layer(network net, int i);
|
||||||
|
53
src/tests.c
53
src/tests.c
@ -204,21 +204,57 @@ void test_nist()
|
|||||||
int count = 0;
|
int count = 0;
|
||||||
double lr = .0005;
|
double lr = .0005;
|
||||||
while(++count <= 1){
|
while(++count <= 1){
|
||||||
double acc = train_network_sgd(net, train, lr, .9, .001);
|
double acc = train_network_sgd(net, train, 10000, lr, .9, .001);
|
||||||
printf("Training Accuracy: %lf", acc);
|
printf("Training Accuracy: %lf\n", acc);
|
||||||
lr /= 2;
|
lr /= 2;
|
||||||
}
|
}
|
||||||
/*
|
|
||||||
double train_acc = network_accuracy(net, train);
|
double train_acc = network_accuracy(net, train);
|
||||||
fprintf(stderr, "\nTRAIN: %f\n", train_acc);
|
fprintf(stderr, "\nTRAIN: %f\n", train_acc);
|
||||||
double test_acc = network_accuracy(net, test);
|
double test_acc = network_accuracy(net, test);
|
||||||
fprintf(stderr, "TEST: %f\n\n", test_acc);
|
fprintf(stderr, "TEST: %f\n\n", test_acc);
|
||||||
printf("%d, %f, %f\n", count, train_acc, test_acc);
|
printf("%d, %f, %f\n", count, train_acc, test_acc);
|
||||||
*/
|
|
||||||
//end = clock();
|
//end = clock();
|
||||||
//printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
//printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void test_ensemble()
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
srand(888888);
|
||||||
|
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
||||||
|
normalize_data_rows(d);
|
||||||
|
randomize_data(d);
|
||||||
|
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
|
||||||
|
normalize_data_rows(test);
|
||||||
|
data train = d;
|
||||||
|
/*
|
||||||
|
data *split = split_data(d, 1, 10);
|
||||||
|
data train = split[0];
|
||||||
|
data test = split[1];
|
||||||
|
*/
|
||||||
|
matrix prediction = make_matrix(test.y.rows, test.y.cols);
|
||||||
|
int n = 30;
|
||||||
|
for(i = 0; i < n; ++i){
|
||||||
|
int count = 0;
|
||||||
|
double lr = .0005;
|
||||||
|
network net = parse_network_cfg("nist.cfg");
|
||||||
|
while(++count <= 5){
|
||||||
|
double acc = train_network_sgd(net, train, train.X.rows, lr, .9, .001);
|
||||||
|
printf("Training Accuracy: %lf\n", acc);
|
||||||
|
lr /= 2;
|
||||||
|
}
|
||||||
|
matrix partial = network_predict_data(net, test);
|
||||||
|
double acc = matrix_accuracy(test.y, partial);
|
||||||
|
printf("Model Accuracy: %lf\n", acc);
|
||||||
|
matrix_add_matrix(partial, prediction);
|
||||||
|
acc = matrix_accuracy(test.y, prediction);
|
||||||
|
printf("Current Ensemble Accuracy: %lf\n", acc);
|
||||||
|
free_matrix(partial);
|
||||||
|
}
|
||||||
|
double acc = matrix_accuracy(test.y, prediction);
|
||||||
|
printf("Full Ensemble Accuracy: %lf\n", acc);
|
||||||
|
}
|
||||||
|
|
||||||
void test_kernel_update()
|
void test_kernel_update()
|
||||||
{
|
{
|
||||||
srand(0);
|
srand(0);
|
||||||
@ -283,7 +319,7 @@ void test_random_classify()
|
|||||||
void test_split()
|
void test_split()
|
||||||
{
|
{
|
||||||
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
||||||
data *split = cv_split_data(train, 0, 13);
|
data *split = split_data(train, 0, 13);
|
||||||
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
|
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -291,8 +327,9 @@ void test_split()
|
|||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
//test_kernel_update();
|
//test_kernel_update();
|
||||||
test_split();
|
//test_split();
|
||||||
// test_nist();
|
test_ensemble();
|
||||||
|
//test_nist();
|
||||||
//test_full();
|
//test_full();
|
||||||
//test_random_preprocess();
|
//test_random_preprocess();
|
||||||
//test_random_classify();
|
//test_random_classify();
|
||||||
@ -307,6 +344,6 @@ int main()
|
|||||||
//test_convolutional_layer();
|
//test_convolutional_layer();
|
||||||
//verify_convolutional_layer();
|
//verify_convolutional_layer();
|
||||||
//test_color();
|
//test_color();
|
||||||
cvWaitKey(0);
|
//cvWaitKey(0);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user