mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
3.5x times accelerated data augmentation using OpenCV for training Yolo on DGX and multi-GPU
This commit is contained in:
90
src/data.c
90
src/data.c
@ -668,6 +668,17 @@ data load_data_swag(char **paths, int n, int classes, float jitter)
|
||||
return d;
|
||||
}
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/core/version.hpp"
|
||||
#ifndef CV_VERSION_EPOCH
|
||||
#include "opencv2/videoio/videoio_c.h"
|
||||
#include "opencv2/imgcodecs/imgcodecs_c.h"
|
||||
#endif
|
||||
|
||||
#include "http_stream.h"
|
||||
|
||||
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure, int small_object)
|
||||
{
|
||||
char **random_paths = get_random_paths(paths, n, m);
|
||||
@ -681,6 +692,73 @@ data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, in
|
||||
|
||||
d.y = make_matrix(n, 5*boxes);
|
||||
for(i = 0; i < n; ++i){
|
||||
const char *filename = random_paths[i];
|
||||
|
||||
int flag = 1;
|
||||
IplImage *src;
|
||||
if ((src = cvLoadImage(filename, flag)) == 0)
|
||||
{
|
||||
fprintf(stderr, "Cannot load image \"%s\"\n", filename);
|
||||
char buff[256];
|
||||
sprintf(buff, "echo %s >> bad.list", filename);
|
||||
system(buff);
|
||||
continue;
|
||||
//exit(0);
|
||||
}
|
||||
|
||||
int oh = src->height;
|
||||
int ow = src->width;
|
||||
|
||||
int dw = (ow*jitter);
|
||||
int dh = (oh*jitter);
|
||||
|
||||
int pleft = rand_uniform_strong(-dw, dw);
|
||||
int pright = rand_uniform_strong(-dw, dw);
|
||||
int ptop = rand_uniform_strong(-dh, dh);
|
||||
int pbot = rand_uniform_strong(-dh, dh);
|
||||
|
||||
int swidth = ow - pleft - pright;
|
||||
int sheight = oh - ptop - pbot;
|
||||
|
||||
float sx = (float)swidth / ow;
|
||||
float sy = (float)sheight / oh;
|
||||
|
||||
int flip = random_gen()%2;
|
||||
|
||||
float dx = ((float)pleft/ow)/sx;
|
||||
float dy = ((float)ptop /oh)/sy;
|
||||
|
||||
float dhue = rand_uniform_strong(-hue, hue);
|
||||
float dsat = rand_scale(saturation);
|
||||
float dexp = rand_scale(exposure);
|
||||
|
||||
image ai = image_data_augmentation(src, w, h, pleft, ptop, swidth, sheight, flip, jitter, dhue, dsat, dexp);
|
||||
d.X.vals[i] = ai.data;
|
||||
|
||||
//show_image(ai, "aug");
|
||||
//cvWaitKey(0);
|
||||
|
||||
fill_truth_detection(filename, boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy, small_object);
|
||||
|
||||
cvReleaseImage(&src);
|
||||
}
|
||||
free(random_paths);
|
||||
return d;
|
||||
}
|
||||
#else // OPENCV
|
||||
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure, int small_object)
|
||||
{
|
||||
char **random_paths = get_random_paths(paths, n, m);
|
||||
int i;
|
||||
data d = { 0 };
|
||||
d.shallow = 0;
|
||||
|
||||
d.X.rows = n;
|
||||
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
||||
d.X.cols = h*w * 3;
|
||||
|
||||
d.y = make_matrix(n, 5 * boxes);
|
||||
for (i = 0; i < n; ++i) {
|
||||
image orig = load_image_color(random_paths[i], 0, 0);
|
||||
|
||||
int oh = orig.h;
|
||||
@ -700,18 +778,18 @@ data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, in
|
||||
float sx = (float)swidth / ow;
|
||||
float sy = (float)sheight / oh;
|
||||
|
||||
int flip = random_gen()%2;
|
||||
int flip = random_gen() % 2;
|
||||
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
|
||||
|
||||
float dx = ((float)pleft/ow)/sx;
|
||||
float dy = ((float)ptop /oh)/sy;
|
||||
float dx = ((float)pleft / ow) / sx;
|
||||
float dy = ((float)ptop / oh) / sy;
|
||||
|
||||
image sized = resize_image(cropped, w, h);
|
||||
if(flip) flip_image(sized);
|
||||
if (flip) flip_image(sized);
|
||||
random_distort_image(sized, hue, saturation, exposure);
|
||||
d.X.vals[i] = sized.data;
|
||||
|
||||
fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy, small_object);
|
||||
fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1. / sx, 1. / sy, small_object);
|
||||
|
||||
free_image(orig);
|
||||
free_image(cropped);
|
||||
@ -719,7 +797,7 @@ data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, in
|
||||
free(random_paths);
|
||||
return d;
|
||||
}
|
||||
|
||||
#endif // OPENCV
|
||||
|
||||
void *load_thread(void *ptr)
|
||||
{
|
||||
|
@ -47,6 +47,7 @@ using std::endl;
|
||||
using namespace cv;
|
||||
|
||||
#include "http_stream.h"
|
||||
#include "image.h"
|
||||
|
||||
|
||||
class MJPGWriter
|
||||
@ -185,8 +186,7 @@ public:
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// ----------------------------------------
|
||||
|
||||
void send_mjpeg(IplImage* ipl, int port, int timeout, int quality) {
|
||||
static MJPGWriter wri(port, timeout, quality);
|
||||
@ -194,7 +194,7 @@ void send_mjpeg(IplImage* ipl, int port, int timeout, int quality) {
|
||||
wri.write(mat);
|
||||
std::cout << " MJPEG-stream sent. \n";
|
||||
}
|
||||
|
||||
// ----------------------------------------
|
||||
|
||||
CvCapture* get_capture_webcam(int index) {
|
||||
CvCapture* cap = NULL;
|
||||
@ -208,6 +208,7 @@ CvCapture* get_capture_webcam(int index) {
|
||||
}
|
||||
return cap;
|
||||
}
|
||||
// ----------------------------------------
|
||||
|
||||
IplImage* get_webcam_frame(CvCapture *cap) {
|
||||
IplImage* src = NULL;
|
||||
@ -225,6 +226,61 @@ IplImage* get_webcam_frame(CvCapture *cap) {
|
||||
}
|
||||
return src;
|
||||
}
|
||||
// ----------------------------------------
|
||||
extern "C" {
|
||||
image ipl_to_image(IplImage* src); // image.c
|
||||
}
|
||||
|
||||
image image_data_augmentation(IplImage* ipl, int w, int h,
|
||||
int pleft, int ptop, int swidth, int sheight, int flip,
|
||||
float jitter, float dhue, float dsat, float dexp)
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(ipl);
|
||||
|
||||
// crop
|
||||
cv::Rect src_rect(pleft, ptop, swidth, sheight);
|
||||
cv::Rect img_rect(cv::Point2i(0, 0), img.size());
|
||||
cv::Rect new_src_rect = src_rect & img_rect;
|
||||
|
||||
cv::Rect dst_rect(cv::Point2i(std::max(0, -pleft), std::max(0, -ptop)), new_src_rect.size());
|
||||
|
||||
cv::Mat cropped(cv::Size(src_rect.width, src_rect.height), img.type());
|
||||
cropped.setTo(cv::Scalar::all(0));
|
||||
|
||||
img(new_src_rect).copyTo(cropped(dst_rect));
|
||||
|
||||
// resize
|
||||
cv::Mat sized;
|
||||
cv::resize(cropped, sized, cv::Size(w, h), 0, 0, INTER_LINEAR);
|
||||
|
||||
// flip
|
||||
if (flip) {
|
||||
cv::flip(sized, cropped, 1); // 0 - x-axis, 1 - y-axis, -1 - both axes (x & y)
|
||||
sized = cropped.clone();
|
||||
}
|
||||
|
||||
// HSV augmentation
|
||||
// CV_BGR2HSV, CV_RGB2HSV, CV_HSV2BGR, CV_HSV2RGB
|
||||
cv::Mat hsv_src;
|
||||
cvtColor(sized, hsv_src, CV_BGR2HSV); // also BGR -> RGB
|
||||
|
||||
std::vector<cv::Mat> hsv;
|
||||
cv::split(hsv_src, hsv);
|
||||
|
||||
hsv[1] *= dsat;
|
||||
hsv[2] *= dexp;
|
||||
hsv[0] += 179 * dhue;
|
||||
|
||||
cv::merge(hsv, hsv_src);
|
||||
|
||||
cvtColor(hsv_src, sized, CV_HSV2RGB); // now RGB instead of BGR
|
||||
|
||||
// Mat -> IplImage -> image
|
||||
IplImage src = sized;
|
||||
image out = ipl_to_image(&src);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
#endif // OPENCV
|
@ -5,11 +5,17 @@
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "image.h"
|
||||
|
||||
void send_mjpeg(IplImage* ipl, int port, int timeout, int quality);
|
||||
CvCapture* get_capture_webcam(int index);
|
||||
IplImage* get_webcam_frame(CvCapture *cap);
|
||||
|
||||
//image image_data_augmentation(const char *filename, int w, int h,
|
||||
image image_data_augmentation(IplImage* ipl, int w, int h,
|
||||
int pleft, int ptop, int swidth, int sheight, int flip,
|
||||
float jitter, float dhue, float dsat, float dexp);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user