CVPR Experiments

This commit is contained in:
Joseph Redmon 2015-11-03 19:23:17 -08:00
parent c40cdeb402
commit 8fd18add6e
27 changed files with 1426 additions and 491 deletions

View File

@ -3,6 +3,7 @@ OPENCV=1
DEBUG=0
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
ARCH= -arch=sm_52 --use_fast_math
VPATH=./src/
EXEC=darknet
@ -36,7 +37,7 @@ endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o swag.o classifier.o
ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o swag_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))

View File

@ -4,10 +4,16 @@ subdivisions=4
height=256
width=256
channels=3
learning_rate=0.01
momentum=0.9
decay=0.0005
learning_rate=0.01
policy=steps
scales=.1,.1,.1
steps=200000,300000,400000
max_batches=800000
[crop]
crop_height=224
crop_width=224
@ -15,6 +21,7 @@ flip=1
angle=0
saturation=1
exposure=1
shift=.2
[convolutional]
filters=64
@ -160,9 +167,6 @@ activation=ramp
size=3
stride=2
[dropout]
probability=0.5
[connected]
output=4096
activation=ramp

View File

@ -1,210 +1,235 @@
[net]
batch=64
subdivisions=4
subdivisions=2
height=448
width=448
channels=3
learning_rate=0.01
momentum=0.9
decay=0.0005
learning_rate=0.001
policy=steps
steps=20000
scales=.1
max_batches = 35000
steps=100,200,300,400,500,600,700,20000,30000
scales=2,2,1.25,1.25,1.25,1.25,1.03,.1,.1
max_batches = 40000
[crop]
crop_width=448
crop_height=448
flip=0
angle=0
saturation = 2
exposure = 2
saturation = 1.5
exposure = 1.5
[convolutional]
filters=64
size=7
stride=2
pad=1
activation=ramp
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=192
size=3
stride=2
stride=1
pad=1
activation=ramp
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=128
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=512
size=3
stride=2
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=ramp
[convolutional]
filters=256
size=1
stride=1
pad=1
activation=ramp
[convolutional]
filters=1024
size=3
stride=2
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=ramp
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=ramp
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
filters=1024
size=3
stride=1
pad=1
activation=leaky
#######
[convolutional]
size=3
stride=1
pad=1
filters=1024
activation=ramp
activation=leaky
[convolutional]
size=3
stride=2
pad=1
filters=1024
activation=ramp
activation=leaky
[convolutional]
size=3
stride=1
pad=1
filters=1024
activation=ramp
activation=leaky
[convolutional]
size=3
stride=1
pad=1
filters=1024
activation=ramp
activation=leaky
[connected]
output=4096
activation=ramp
activation=leaky
[dropout]
probability=.5
[connected]
output=1225
activation=logistic
output= 1470
activation=linear
[detection]
[region]
classes=20
coords=4
rescore=0
joint=0
objectness=1
background=0
rescore=1
side=7
num=2
softmax=0
sqrt=1
jitter=.2
object_scale=1
noobject_scale=.5
class_scale=1
coord_scale=5

View File

@ -1,6 +1,51 @@
#include "blas.h"
#include "math.h"
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
{
float scale = 1./(batch * spatial);
int i,j,k;
for(i = 0; i < filters; ++i){
mean[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
mean[i] += x[index];
}
}
mean[i] *= scale;
}
}
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
float scale = 1./(batch * spatial);
int i,j,k;
for(i = 0; i < filters; ++i){
variance[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
variance[i] += pow((x[index] - mean[i]), 2);
}
}
variance[i] *= scale;
}
}
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
int b, f, i;
for(b = 0; b < batch; ++b){
for(f = 0; f < filters; ++f){
for(i = 0; i < spatial; ++i){
int index = b*filters*spatial + f*spatial + i;
x[index] = (x[index] - mean[f])/(sqrt(variance[f]));
}
}
}
}
void const_cpu(int N, float ALPHA, float *X, int INCX)
{
int i;

View File

@ -16,6 +16,10 @@ void scal_cpu(int N, float ALPHA, float *X, int INCX);
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
void test_gpu_blas();
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
#ifdef GPU
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
@ -26,6 +30,20 @@ void mask_ongpu(int N, float * X, float mask_num, float * mask);
void const_ongpu(int N, float ALPHA, float *X, int INCX);
void pow_ongpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
void mul_ongpu(int N, float *X, int INCX, float *Y, int INCY);
void fill_ongpu(int N, float ALPHA, float * X, int INCX);
void mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta);
void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta);
void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance);
void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean);
#endif
#endif

View File

@ -4,6 +4,181 @@ extern "C" {
#include "utils.h"
}
__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
int f = (index/spatial)%filters;
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
}
__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
{
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
int f = (index/spatial)%filters;
delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
}
extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
{
size_t N = batch*filters*spatial;
normalize_delta_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta);
check_error(cudaPeekAtLastError());
}
__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
int j,k;
variance_delta[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
variance_delta[i] += delta[index]*(x[index] - mean[i]);
}
}
variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
}
__global__ void spatial_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= batch*filters) return;
int f = i%filters;
int b = i/filters;
int k;
spatial_variance_delta[i] = 0;
for (k = 0; k < spatial; ++k) {
int index = b*filters*spatial + f*spatial + k;
spatial_variance_delta[i] += delta[index]*(x[index] - mean[f]);
}
spatial_variance_delta[i] *= -.5 * pow(variance[f] + .00001f, (float)(-3./2.));
}
extern "C" void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
{
variance_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, variance_delta);
check_error(cudaPeekAtLastError());
}
__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
{
int k;
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= groups) return;
sum[i] = 0;
for(k = 0; k < n; ++k){
sum[i] += x[k*groups + i];
}
}
extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta)
{
spatial_variance_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, spatial_variance_delta);
check_error(cudaPeekAtLastError());
accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance_delta, batch, filters, variance_delta);
check_error(cudaPeekAtLastError());
}
__global__ void spatial_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= batch*filters) return;
int f = i%filters;
int b = i/filters;
int k;
spatial_mean_delta[i] = 0;
for (k = 0; k < spatial; ++k) {
int index = b*filters*spatial + f*spatial + k;
spatial_mean_delta[i] += delta[index];
}
spatial_mean_delta[i] *= (-1./sqrt(variance[f] + .00001f));
}
extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta)
{
spatial_mean_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(delta, variance, batch, filters, spatial, spatial_mean_delta);
check_error(cudaPeekAtLastError());
accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean_delta, batch, filters, mean_delta);
check_error(cudaPeekAtLastError());
}
__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
int j,k;
mean_delta[i] = 0;
for (j = 0; j < batch; ++j) {
for (k = 0; k < spatial; ++k) {
int index = j*filters*spatial + i*spatial + k;
mean_delta[i] += delta[index];
}
}
mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
}
extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
{
mean_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta);
check_error(cudaPeekAtLastError());
}
__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
{
float scale = 1./(batch * spatial);
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
int j,k;
mean[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
mean[i] += x[index];
}
}
mean[i] *= scale;
}
__global__ void spatial_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
float scale = 1./(spatial*batch-1);
int k;
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= batch*filters) return;
int f = i%filters;
int b = i/filters;
variance[i] = 0;
for(k = 0; k < spatial; ++k){
int index = b*filters*spatial + f*spatial + k;
variance[i] += pow((x[index] - mean[f]), 2);
}
variance[i] *= scale;
}
__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
float scale = 1./(batch * spatial);
int j,k;
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
variance[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
variance[i] += pow((x[index] - mean[i]), 2);
}
}
variance[i] *= scale;
}
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@ -28,6 +203,12 @@ __global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
if(i < N) X[i*INCX] *= ALPHA;
}
__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < N) X[i*INCX] = ALPHA;
}
__global__ void mask_kernel(int n, float *x, float mask_num, float *mask)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@ -46,6 +227,41 @@ __global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY)
if(i < N) Y[i*INCY] *= X[i*INCX];
}
extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
size_t N = batch*filters*spatial;
normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
check_error(cudaPeekAtLastError());
}
extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
{
mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, batch, filters, spatial, mean);
check_error(cudaPeekAtLastError());
}
extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean)
{
mean_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, 1, filters*batch, spatial, spatial_mean);
check_error(cudaPeekAtLastError());
mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean, batch, filters, 1, mean);
check_error(cudaPeekAtLastError());
}
extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance)
{
spatial_variance_kernel<<<cuda_gridsize(batch*filters), BLOCK>>>(x, mean, batch, filters, spatial, spatial_variance);
check_error(cudaPeekAtLastError());
accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance, batch, filters, variance);
check_error(cudaPeekAtLastError());
}
extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
variance_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, mean, batch, filters, spatial, variance);
check_error(cudaPeekAtLastError());
}
extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
{
axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY);
@ -97,3 +313,9 @@ extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}
extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
{
fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}

View File

@ -1,6 +1,7 @@
#include "box.h"
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
box float_to_box(float *f)
{
@ -229,6 +230,52 @@ dbox diou(box a, box b)
return dd;
}
typedef struct{
int index;
int class;
float **probs;
} sortable_bbox;
int nms_comparator(const void *pa, const void *pb)
{
sortable_bbox a = *(sortable_bbox *)pa;
sortable_bbox b = *(sortable_bbox *)pb;
float diff = a.probs[a.index][b.class] - b.probs[b.index][b.class];
if(diff < 0) return 1;
else if(diff > 0) return -1;
return 0;
}
void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh)
{
int i, j, k;
sortable_bbox *s = calloc(total, sizeof(sortable_bbox));
for(i = 0; i < total; ++i){
s[i].index = i;
s[i].class = 0;
s[i].probs = probs;
}
for(k = 0; k < classes; ++k){
for(i = 0; i < total; ++i){
s[i].class = k;
}
qsort(s, total, sizeof(sortable_bbox), nms_comparator);
for(i = 0; i < total; ++i){
if(probs[s[i].index][k] == 0) continue;
box a = boxes[s[i].index];
for(j = i+1; j < total; ++j){
box b = boxes[s[j].index];
if (box_iou(a, b) > thresh){
probs[s[j].index][k] = 0;
}
}
}
}
free(s);
}
void do_nms(box *boxes, float **probs, int total, int classes, float thresh)
{
int i, j, k;

View File

@ -14,6 +14,7 @@ float box_iou(box a, box b);
float box_rmse(box a, box b);
dbox diou(box a, box b);
void do_nms(box *boxes, float **probs, int total, int classes, float thresh);
void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh);
box decode_box(box b, box anchor);
box encode_box(box b, box anchor);

316
src/classifier.c Normal file
View File

@ -0,0 +1,316 @@
#include "network.h"
#include "utils.h"
#include "parser.h"
#include "option_list.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
list *read_data_cfg(char *filename)
{
FILE *file = fopen(filename, "r");
if(file == 0) file_error(filename);
char *line;
int nu = 0;
list *options = make_list();
while((line=fgetl(file)) != 0){
++ nu;
strip(line);
switch(line[0]){
case '\0':
case '#':
case ';':
free(line);
break;
default:
if(!read_option(line, options)){
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
free(line);
}
break;
}
}
fclose(file);
return options;
}
void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
{
data_seed = time(0);
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
list *options = read_data_cfg(datacfg);
char *backup_directory = option_find_str(options, "backup", "/backup/");
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *train_list = option_find_str(options, "train", "data/train.list");
int classes = option_find_int(options, "classes", 2);
char **labels = get_labels(label_list);
list *plist = get_paths(train_list);
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
int N = plist->size;
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.classes = classes;
args.n = imgs;
args.m = N;
args.labels = labels;
args.d = &buffer;
args.type = CLASSIFICATION_DATA;
load_thread = load_data_in_thread(args);
int epoch = (*net.seen)/N;
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
free_data(train);
if(*net.seen/N > epoch){
epoch = *net.seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s.weights", backup_directory, base);
save_weights(net, buff);
pthread_join(load_thread, 0);
free_data(buffer);
free_network(net);
free_ptrs((void**)labels, classes);
free_ptrs((void**)paths, plist->size);
free_list(plist);
free(base);
}
void validate_classifier(char *datacfg, char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *valid_list = option_find_str(options, "valid", "data/train.list");
int classes = option_find_int(options, "classes", 2);
int topk = option_find_int(options, "topk", 1);
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
float avg_acc = 0;
float avg_topk = 0;
int splits = 50;
int num = (i+1)*m/splits - i*m/splits;
data val, buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.classes = classes;
args.n = num;
args.m = 0;
args.labels = labels;
args.d = &buffer;
args.type = CLASSIFICATION_DATA;
pthread_t load_thread = load_data_in_thread(args);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits){
args.paths = part;
load_thread = load_data_in_thread(args);
}
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
float *acc = network_accuracies(net, val, topk);
avg_acc += acc[0];
avg_topk += acc[1];
printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
int top = option_find_int(options, "top", 1);
int i = 0;
char **names = get_labels(label_list);
clock_t time;
int indexes[10];
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 256, 256);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, top, indexes);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
for(i = 0; i < top; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
if (filename) break;
}
}
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer)
{
int curr = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
list *options = read_data_cfg(datacfg);
char *test_list = option_find_str(options, "test", "data/test.list");
char *label_list = option_find_str(options, "labels", "data/labels.list");
int classes = option_find_int(options, "classes", 2);
char **labels = get_labels(label_list);
list *plist = get_paths(test_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
data val, buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.classes = classes;
args.n = net.batch;
args.m = 0;
args.labels = labels;
args.d = &buffer;
args.type = CLASSIFICATION_DATA;
pthread_t load_thread = load_data_in_thread(args);
for(curr = net.batch; curr < m; curr += net.batch){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
if(curr < m){
args.paths = paths + curr;
if (curr + net.batch > m) args.n = m - curr;
load_thread = load_data_in_thread(args);
}
fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
matrix pred = network_predict_data(net, val);
int i;
if (target_layer >= 0){
//layer l = net.layers[target_layer];
}
for(i = 0; i < val.X.rows; ++i){
}
free_matrix(pred);
fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows);
free_data(val);
}
}
void run_classifier(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *data = argv[3];
char *cfg = argv[4];
char *weights = (argc > 5) ? argv[5] : 0;
char *filename = (argc > 6) ? argv[6]: 0;
char *layer_s = (argc > 7) ? argv[7]: 0;
int layer = layer_s ? atoi(layer_s) : -1;
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer);
else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
}

View File

@ -1,7 +1,7 @@
#include <stdio.h>
#include "network.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
@ -15,32 +15,27 @@ char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
void draw_coco(image im, float *pred, int side, char *label)
void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
{
int classes = 1;
int elems = 4+classes;
int j;
int r, c;
int classes = 80;
int i;
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
int class = max_index(pred+j, classes);
if (pred[j+class] > 0.2){
int width = pred[j+class]*5 + 1;
printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
for(i = 0; i < num; ++i){
int class = max_index(probs[i], classes);
float prob = probs[i][class];
if(prob > thresh){
int width = sqrt(prob)*5 + 1;
printf("%f %s\n", prob, coco_classes[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
box b = boxes[i];
j += classes;
box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
predict.x = (predict.x+c)/side;
predict.y = (predict.y+r)/side;
draw_bbox(im, predict, width, red, green, blue);
}
int left = (b.x-b.w/2.)*im.w;
int right = (b.x+b.w/2.)*im.w;
int top = (b.y-b.h/2.)*im.h;
int bot = (b.y+b.h/2.)*im.h;
draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
show_image(im, label);
@ -48,8 +43,8 @@ void draw_coco(image im, float *pred, int side, char *label)
void train_coco(char *cfgfile, char *weightfile)
{
//char *train_images = "/home/pjreddie/data/coco/train.txt";
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
char *train_images = "/home/pjreddie/data/coco/train.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
@ -61,7 +56,7 @@ void train_coco(char *cfgfile, char *weightfile)
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
data train, buffer;
@ -70,9 +65,10 @@ void train_coco(char *cfgfile, char *weightfile)
int side = l.side;
int classes = l.classes;
float jitter = l.jitter;
list *plist = get_paths(train_images);
int N = plist->size;
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
@ -82,13 +78,15 @@ void train_coco(char *cfgfile, char *weightfile)
args.n = imgs;
args.m = plist->size;
args.classes = classes;
args.jitter = jitter;
args.num_boxes = side;
args.d = &buffer;
args.type = REGION_DATA;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
while(i*imgs < N*120){
//while(i*imgs < N*120){
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
@ -110,7 +108,7 @@ void train_coco(char *cfgfile, char *weightfile)
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@ -123,60 +121,38 @@ void train_coco(char *cfgfile, char *weightfile)
save_weights(net, buff);
}
void get_probs(float *predictions, int total, int classes, int inc, float **probs)
void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
{
int i,j;
for (i = 0; i < total; ++i){
int index = i*inc;
float scale = predictions[index];
probs[i][0] = scale;
int i,j,n;
//int per_cell = 5*num+classes;
for (i = 0; i < side*side; ++i){
int row = i / side;
int col = i % side;
for(n = 0; n < num; ++n){
int index = i*num + n;
int p_index = side*side*classes + i*num + n;
float scale = predictions[p_index];
int box_index = side*side*(classes + num) + (i*num + n)*4;
boxes[index].x = (predictions[box_index + 0] + col) / side * w;
boxes[index].y = (predictions[box_index + 1] + row) / side * h;
boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
for(j = 0; j < classes; ++j){
probs[i][j] = scale*predictions[index+j+1];
int class_index = i*classes;
float prob = scale*predictions[class_index+j];
probs[index][j] = (prob > thresh) ? prob : 0;
}
if(only_objectness){
probs[index][0] = scale;
}
}
}
void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
{
int i,j;
for (i = 0; i < num_boxes*num_boxes; ++i){
for(j = 0; j < n; ++j){
int index = i*n+j;
int offset = index*per_box;
int row = i / num_boxes;
int col = i % num_boxes;
boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
boxes[index].w = predictions[offset + 2];
boxes[index].h = predictions[offset + 3];
}
}
}
void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
{
int i,j;
int per_box = 4+classes;
for (i = 0; i < num_boxes*num_boxes*num; ++i){
int offset = i*per_box;
for(j = 0; j < classes; ++j){
float prob = predictions[offset+j];
probs[i][j] = (prob > thresh) ? prob : 0;
}
int row = i / num_boxes;
int col = i % num_boxes;
offset += classes;
boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
boxes[i].w = predictions[offset + 2];
boxes[i].h = predictions[offset + 3];
}
}
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
int i, j;
for(i = 0; i < num_boxes*num_boxes; ++i){
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
@ -204,201 +180,6 @@ int get_coco_image_id(char *filename)
return atoi(p+1);
}
void validate_recall(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
list *plist = get_paths(val_images);
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n - 1];
int num_boxes = l.side;
int num = l.n;
int classes = l.classes;
int j;
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
int N = plist->size;
int i=0;
int k;
float iou_thresh = .5;
float thresh = .1;
int total = 0;
int correct = 0;
float avg_iou = 0;
int nms = 1;
int proposals = 0;
int save = 1;
for (i = 0; i < N; ++i) {
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image resized = resize_image(orig, net.w, net.h);
float *X = resized.data;
float *predictions = network_predict(net, X);
get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < num_boxes*num_boxes*num; ++k){
if(probs[k][0] > thresh){
++proposals;
if(save){
char buff[256];
sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
int w = boxes[k].w * orig.w;
int h = boxes[k].h * orig.h;
image cropped = crop_image(orig, dx, dy, w, h);
image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
save_image_jpg(sized, buff);
#endif
free_image(sized);
free_image(cropped);
sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
char *im_id = basecfg(path);
FILE *fp = fopen(buff, "w");
fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
fclose(fp);
free(im_id);
}
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < num_boxes*num_boxes*num; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
free(truth);
free_image(orig);
free_image(resized);
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
}
}
void extract_boxes(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *val_images = "/home/pjreddie/data/voc/test/train.txt";
list *plist = get_paths(val_images);
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n - 1];
int num_boxes = l.side;
int num = l.n;
int classes = l.classes;
int j;
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
int N = plist->size;
int i=0;
int k;
int count = 0;
float iou_thresh = .3;
for (i = 0; i < N; ++i) {
fprintf(stderr, "%5d %5d\n", i, count);
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image resized = resize_image(orig, net.w, net.h);
float *X = resized.data;
float *predictions = network_predict(net, X);
get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
FILE *label = stdin;
for(k = 0; k < num_boxes*num_boxes*num; ++k){
int overlaps = 0;
for (j = 0; j < num_labels; ++j) {
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float iou = box_iou(boxes[k], t);
if (iou > iou_thresh){
if (!overlaps) {
char buff[256];
sprintf(buff, "/data/extracted/labels/%d.txt", count);
label = fopen(buff, "w");
overlaps = 1;
}
fprintf(label, "%d %f\n", truth[j].id, iou);
}
}
if (overlaps) {
char buff[256];
sprintf(buff, "/data/extracted/imgs/%d", count++);
int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
int w = boxes[k].w * orig.w;
int h = boxes[k].h * orig.h;
image cropped = crop_image(orig, dx, dy, w, h);
image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
save_image_jpg(sized, buff);
#endif
free_image(sized);
free_image(cropped);
fclose(label);
}
}
free(truth);
free_image(orig);
free_image(resized);
}
}
void validate_coco(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
@ -409,13 +190,16 @@ void validate_coco(char *cfgfile, char *weightfile)
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "/home/pjreddie/backup/";
char *base = "results/";
list *plist = get_paths("data/coco_val_5k.list");
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
int num_boxes = 9;
int num = 4;
int classes = 1;
layer l = net.layers[net.n-1];
int classes = l.classes;
int square = l.sqrt;
int side = l.side;
int j;
char buff[1024];
@ -423,29 +207,30 @@ void validate_coco(char *cfgfile, char *weightfile)
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
int t;
float thresh = .01;
float thresh = .001;
int nms = 1;
float iou_thresh = .5;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
int nthreads = 8;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
for(t = 0; t < nthreads; ++t){
args.path = paths[i+t];
args.im = &buf[t];
@ -473,9 +258,9 @@ void validate_coco(char *cfgfile, char *weightfile)
float *predictions = network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
free_image(val[t]);
free_image(val_resized[t]);
}
@ -483,21 +268,114 @@ void validate_coco(char *cfgfile, char *weightfile)
fseek(fp, -2, SEEK_CUR);
fprintf(fp, "\n]\n");
fclose(fp);
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void test_coco(char *cfgfile, char *weightfile, char *filename)
void validate_coco_recall(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "results/comp4_det_test_";
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
int classes = l.classes;
int square = l.sqrt;
int side = l.side;
int j, k;
FILE **fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
char buff[1024];
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
float thresh = .001;
int nms = 0;
float iou_thresh = .5;
float nms_thresh = .5;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for(i = 0; i < m; ++i){
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
float *predictions = network_predict(net, sized.data);
convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
++proposals;
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
free(id);
free_image(orig);
free_image(sized);
}
}
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
region_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
int j;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
while(1){
if(filename){
strncpy(input, filename, 256);
@ -514,7 +392,10 @@ void test_coco(char *cfgfile, char *weightfile, char *filename)
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
draw_coco(im, predictions, 7, "predictions");
convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
show_image(sized, "resized");
free_image(im);
free_image(sized);
#ifdef OPENCV
@ -527,6 +408,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename)
void run_coco(int argc, char **argv)
{
float thresh = find_float_arg(argc, argv, "-thresh", .2);
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
@ -535,8 +417,8 @@ void run_coco(int argc, char **argv)
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
}

View File

@ -307,7 +307,7 @@ void BattleRoyaleWithCheese(char *filename, char *weightfile)
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
N /= 2;
for(round = 1; round <= 20; ++round){
for(round = 1; round <= 100; ++round){
clock_t round_time=clock();
printf("Round: %d\n", round);
@ -316,7 +316,7 @@ void BattleRoyaleWithCheese(char *filename, char *weightfile)
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class);
}
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
N = (N*9/10)/2*2;
if(round <= 20) N = (N*9/10)/2*2;
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
}

View File

@ -8,21 +8,65 @@ extern "C" {
#include "cuda.h"
}
__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int filter = blockIdx.y;
int batch = blockIdx.z;
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter];
}
void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size)
{
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
dim3 dimBlock(BLOCK, 1, 1);
bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
{
__shared__ float part[BLOCK];
int i,b;
int filter = blockIdx.x;
int p = threadIdx.x;
float sum = 0;
for(b = 0; b < batch; ++b){
for(i = 0; i < size; i += BLOCK){
int index = p + i + size*(filter + n*b);
sum += (p+i < size) ? delta[index]*x_norm[index] : 0;
}
}
part[p] = sum;
__syncthreads();
if (p == 0) {
for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i];
}
}
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
{
backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
check_error(cudaPeekAtLastError());
}
__global__ void add_bias_kernel(float *output, float *biases, int n, int size)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int filter = blockIdx.y;
int batch = blockIdx.z;
if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter];
}
void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
{
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
dim3 dimBlock(BLOCK, 1, 1);
add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
@ -52,53 +96,88 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
check_error(cudaPeekAtLastError());
}
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
int i;
int m = layer.n;
int k = layer.size*layer.size*layer.c;
int n = convolutional_out_height(layer)*
convolutional_out_width(layer);
int m = l.n;
int k = l.size*l.size*l.c;
int n = convolutional_out_height(l)*
convolutional_out_width(l);
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
for(i = 0; i < layer.batch; ++i){
im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
float * a = layer.filters_gpu;
float * b = layer.col_image_gpu;
float * c = layer.output_gpu;
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
for(i = 0; i < l.batch; ++i){
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
float * a = l.filters_gpu;
float * b = l.col_image_gpu;
float * c = l.output_gpu;
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
}
activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
if(l.batch_normalize){
if(state.train){
fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu);
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu);
scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
// cuda_pull_array(l.variance_gpu, l.mean, l.n);
// printf("%f\n", l.mean[0]);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
} else {
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w);
}
void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
}
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
}
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
int i;
int m = layer.n;
int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)*
convolutional_out_width(layer);
int m = l.n;
int n = l.size*l.size*l.c;
int k = convolutional_out_height(l)*
convolutional_out_width(l);
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
for(i = 0; i < layer.batch; ++i){
float * a = layer.delta_gpu;
float * b = layer.col_image_gpu;
float * c = layer.filter_updates_gpu;
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
if(l.batch_normalize){
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu);
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu);
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu);
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu);
}
for(i = 0; i < l.batch; ++i){
float * a = l.delta_gpu;
float * b = l.col_image_gpu;
float * c = l.filter_updates_gpu;
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
if(state.delta){
float * a = layer.filters_gpu;
float * b = layer.delta_gpu;
float * c = layer.col_image_gpu;
float * a = l.filters_gpu;
float * b = l.delta_gpu;
float * c = l.col_image_gpu;
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
}
}
}
@ -109,6 +188,11 @@ void pull_convolutional_layer(convolutional_layer layer)
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
if (layer.batch_normalize){
cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
}
}
void push_convolutional_layer(convolutional_layer layer)
@ -117,6 +201,11 @@ void push_convolutional_layer(convolutional_layer layer)
cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
if (layer.batch_normalize){
cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
}
}
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
@ -126,8 +215,12 @@ void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float
axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
}

View File

@ -41,7 +41,7 @@ image get_convolutional_delta(convolutional_layer l)
return float_to_image(w,h,c,l.delta);
}
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
{
int i;
convolutional_layer l = {0};
@ -55,18 +55,17 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
l.stride = stride;
l.size = size;
l.pad = pad;
l.batch_normalize = batch_normalize;
l.filters = calloc(c*n*size*size, sizeof(float));
l.filter_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
for(i = 0; i < n; ++i){
l.biases[i] = scale;
}
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
@ -79,6 +78,21 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
if(batch_normalize){
l.scales = calloc(n, sizeof(float));
l.scale_updates = calloc(n, sizeof(float));
for(i = 0; i < n; ++i){
l.scales[i] = 1;
}
l.mean = calloc(n, sizeof(float));
l.spatial_mean = calloc(n*l.batch, sizeof(float));
l.variance = calloc(n, sizeof(float));
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
}
#ifdef GPU
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
@ -86,9 +100,32 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
l.scales_gpu = cuda_make_array(l.scales, n);
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
if(batch_normalize){
l.mean_gpu = cuda_make_array(l.mean, n);
l.variance_gpu = cuda_make_array(l.variance, n);
l.rolling_mean_gpu = cuda_make_array(l.mean, n);
l.rolling_variance_gpu = cuda_make_array(l.variance, n);
l.spatial_mean_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
l.spatial_variance_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
l.spatial_mean_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
l.spatial_variance_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
l.mean_delta_gpu = cuda_make_array(l.mean, n);
l.variance_delta_gpu = cuda_make_array(l.variance, n);
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
}
#endif
l.activation = activation;
@ -97,6 +134,42 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
return l;
}
void denormalize_convolutional_layer(convolutional_layer l)
{
int i, j;
for(i = 0; i < l.n; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
for(j = 0; j < l.c*l.size*l.size; ++j){
l.filters[i*l.c*l.size*l.size + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
}
}
void test_convolutional_layer()
{
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
l.batch_normalize = 1;
float data[] = {1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
2,2,2,2,2,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3,
3,3,3,3,3};
network_state state = {0};
state.input = data;
forward_convolutional_layer(l, state);
}
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
l->w = w;
@ -150,7 +223,6 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
}
}
void forward_convolutional_layer(const convolutional_layer l, network_state state)
{
int out_h = convolutional_out_height(l);
@ -174,6 +246,13 @@ void forward_convolutional_layer(const convolutional_layer l, network_state stat
c += n*m;
state.input += l.c*l.h*l.w;
}
if(l.batch_normalize){
mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);
variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);
}
activate_array(l.output, m*n*l.batch, l.activation);
}

View File

@ -17,11 +17,12 @@ void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float
void push_convolutional_layer(convolutional_layer layer);
void pull_convolutional_layer(convolutional_layer layer);
void bias_output_gpu(float *output, float *biases, int batch, int n, int size);
void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#endif
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization);
void denormalize_convolutional_layer(convolutional_layer l);
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);

View File

@ -91,7 +91,7 @@ __device__ float bilinear_interpolate_kernel(float *image, int w, int h, float x
return val;
}
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale)
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale, float shift)
{
int size = batch * w * h;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@ -100,6 +100,9 @@ __global__ void levels_image_kernel(float *image, float *rand, int batch, int w,
id /= w;
int y = id % h;
id /= h;
float rshift = rand[0];
float gshift = rand[1];
float bshift = rand[2];
float r0 = rand[8*id + 0];
float r1 = rand[8*id + 1];
float r2 = rand[8*id + 2];
@ -121,10 +124,12 @@ __global__ void levels_image_kernel(float *image, float *rand, int batch, int w,
hsv.y *= saturation;
hsv.z *= exposure;
rgb = hsv_to_rgb_kernel(hsv);
} else {
shift = 0;
}
image[x + w*(y + h*0)] = rgb.x*scale + translate;
image[x + w*(y + h*1)] = rgb.y*scale + translate;
image[x + w*(y + h*2)] = rgb.z*scale + translate;
image[x + w*(y + h*0)] = rgb.x*scale + translate + (rshift - .5)*shift;
image[x + w*(y + h*1)] = rgb.y*scale + translate + (gshift - .5)*shift;
image[x + w*(y + h*2)] = rgb.z*scale + translate + (bshift - .5)*shift;
}
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
@ -186,7 +191,7 @@ extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
int size = layer.batch * layer.w * layer.h;
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale);
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale, layer.shift);
check_error(cudaPeekAtLastError());
size = layer.batch*layer.c*layer.crop_width*layer.crop_height;

View File

@ -141,6 +141,47 @@ void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
save_weights(net, outfile);
}
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int i, j;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
net.layers[i].batch_normalize=1;
net.layers[i].scales = calloc(l.n, sizeof(float));
for(j = 0; j < l.n; ++j){
net.layers[i].scales[i] = 1;
}
net.layers[i].rolling_mean = calloc(l.n, sizeof(float));
net.layers[i].rolling_variance = calloc(l.n, sizeof(float));
}
}
save_weights(net, outfile);
}
void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int i;
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
denormalize_convolutional_layer(l);
net.layers[i].batch_normalize=0;
}
}
save_weights(net, outfile);
}
void visualize(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
@ -202,6 +243,10 @@ int main(int argc, char **argv)
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
} else if (0 == strcmp(argv[1], "rgbgr")){
rgbgr_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "denormalize")){
denormalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "normalize")){
normalize_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "rescale")){
rescale_net(argv[2], argv[3], argv[4]);
} else if (0 == strcmp(argv[1], "partial")){

View File

@ -153,7 +153,9 @@ void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int
{
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPG", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count = 0;
box_label *boxes = read_boxes(labelpath, &count);
@ -547,7 +549,7 @@ void *load_thread(void *ptr)
check_error(status);
#endif
printf("Loading data: %d\n", rand_r(&data_seed));
//printf("Loading data: %d\n", rand_r(&data_seed));
load_args a = *(struct load_args*)ptr;
if (a.type == CLASSIFICATION_DATA){
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);

View File

@ -20,7 +20,7 @@ extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, n
int n = layer.h*layer.w;
int k = layer.c;
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
for(i = 0; i < layer.batch; ++i){
float *a = layer.filters_gpu;
@ -31,6 +31,7 @@ extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, n
col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
}
add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
}

View File

@ -215,7 +215,7 @@ void show_image_cv(image p, char *name)
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
cvNamedWindow(buff, CV_WINDOW_AUTOSIZE);
cvNamedWindow(buff, CV_WINDOW_NORMAL);
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
++windows;
for(y = 0; y < p.h; ++y){
@ -696,7 +696,7 @@ image load_image_cv(char *filename, int channels)
if( (src = cvLoadImage(filename, flag)) == 0 )
{
printf("Cannot load file image %s\n", filename);
printf("Cannot load image \"%s\"\n", filename);
exit(0);
}
image out = ipl_to_image(src);
@ -713,7 +713,7 @@ image load_image_stb(char *filename, int channels)
int w, h, c;
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
if (!data) {
fprintf(stderr, "Cannot load file image %s\nSTB Reason: %s\n", filename, stbi_failure_reason());
fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
exit(0);
}
if(channels) c = channels;

View File

@ -92,6 +92,7 @@ void validate_imagenet(char *filename, char *weightfile)
srand(time(0));
char **labels = get_labels("data/inet.labels.list");
//list *plist = get_paths("data/inet.suppress.list");
list *plist = get_paths("data/inet.val.list");
char **paths = (char **)list_to_array(plist);

View File

@ -27,6 +27,7 @@ typedef struct {
LAYER_TYPE type;
ACTIVATION activation;
COST_TYPE cost_type;
int batch_normalize;
int batch;
int forced;
int object_logistic;
@ -51,6 +52,7 @@ typedef struct {
float jitter;
float saturation;
float exposure;
float shift;
int softmax;
int classes;
int coords;
@ -71,6 +73,7 @@ typedef struct {
float class_scale;
int dontload;
int dontloadscales;
float probability;
float scale;
@ -84,6 +87,9 @@ typedef struct {
float *biases;
float *bias_updates;
float *scales;
float *scale_updates;
float *weights;
float *weight_updates;
@ -95,18 +101,44 @@ typedef struct {
float * squared;
float * norms;
float * spatial_mean;
float * mean;
float * variance;
float * rolling_mean;
float * rolling_variance;
#ifdef GPU
int *indexes_gpu;
float * filters_gpu;
float * filter_updates_gpu;
float * spatial_mean_gpu;
float * spatial_variance_gpu;
float * mean_gpu;
float * variance_gpu;
float * rolling_mean_gpu;
float * rolling_variance_gpu;
float * spatial_mean_delta_gpu;
float * spatial_variance_delta_gpu;
float * variance_delta_gpu;
float * mean_delta_gpu;
float * col_image_gpu;
float * x_gpu;
float * x_norm_gpu;
float * weights_gpu;
float * biases_gpu;
float * scales_gpu;
float * weight_updates_gpu;
float * bias_updates_gpu;
float * scale_updates_gpu;
float * output_gpu;
float * delta_gpu;

View File

@ -15,6 +15,7 @@ typedef struct {
int n;
int batch;
int *seen;
float epoch;
int subdivisions;
float momentum;
float decay;

View File

@ -36,7 +36,7 @@ void forward_network_gpu(network net, network_state state)
for(i = 0; i < net.n; ++i){
layer l = net.layers[i];
if(l.delta_gpu){
scal_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
}
if(l.type == CONVOLUTIONAL){
forward_convolutional_layer_gpu(l, state);

View File

@ -124,8 +124,9 @@ convolutional_layer parse_convolutional(list *options, size_params params)
c = params.c;
batch=params.batch;
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
@ -227,6 +228,7 @@ crop_layer parse_crop(list *options, size_params params)
int noadjust = option_find_int_quiet(options, "noadjust",0);
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
l.shift = option_find_float(options, "shift", 0);
l.noadjust = noadjust;
return l;
}
@ -452,6 +454,7 @@ network parse_network_cfg(char *filename)
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
l.dontload = option_find_int_quiet(options, "dontload", 0);
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
option_unused(options);
net.layers[count] = l;
free_section(s);
@ -633,19 +636,13 @@ void save_weights_upto(network net, char *filename, int cutoff)
#endif
int num = l.n*l.c*l.size*l.size;
fwrite(l.biases, sizeof(float), l.n, fp);
if (l.batch_normalize){
fwrite(l.scales, sizeof(float), l.n, fp);
fwrite(l.rolling_mean, sizeof(float), l.n, fp);
fwrite(l.rolling_variance, sizeof(float), l.n, fp);
}
fwrite(l.filters, sizeof(float), num, fp);
}
if(l.type == DECONVOLUTIONAL){
#ifdef GPU
if(gpu_index >= 0){
pull_deconvolutional_layer(l);
}
#endif
int num = l.n*l.c*l.size*l.size;
fwrite(l.biases, sizeof(float), l.n, fp);
fwrite(l.filters, sizeof(float), num, fp);
}
if(l.type == CONNECTED){
} if(l.type == CONNECTED){
#ifdef GPU
if(gpu_index >= 0){
pull_connected_layer(l);
@ -682,6 +679,11 @@ void load_weights_upto(network *net, char *filename, int cutoff)
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
fread(l.biases, sizeof(float), l.n, fp);
if (l.batch_normalize && (!l.dontloadscales)){
fread(l.scales, sizeof(float), l.n, fp);
fread(l.rolling_mean, sizeof(float), l.n, fp);
fread(l.rolling_variance, sizeof(float), l.n, fp);
}
fread(l.filters, sizeof(float), num, fp);
#ifdef GPU
if(gpu_index >= 0){

View File

@ -226,6 +226,11 @@ void backward_region_layer(const region_layer l, network_state state)
void forward_region_layer_gpu(const region_layer l, network_state state)
{
if(!state.train){
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
return;
}
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){

View File

@ -12,47 +12,41 @@
char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
void draw_swag(image im, float *predictions, int side, int num, char *label, float thresh)
void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label)
{
int classes = 20;
int i,n;
int i;
for(i = 0; i < side*side; ++i){
int row = i / side;
int col = i % side;
for(n = 0; n < num; ++n){
int p_index = side*side*classes + i*num + n;
int box_index = side*side*(classes + num) + (i*num + n)*4;
int class_index = i*classes;
float scale = predictions[p_index];
int class = max_index(predictions+class_index, classes);
float prob = scale * predictions[class_index + class];
for(i = 0; i < num; ++i){
int class = max_index(probs[i], classes);
float prob = probs[i][class];
if(prob > thresh){
int width = sqrt(prob)*5 + 1;
int width = pow(prob, 1./3.)*10 + 1;
printf("%f %s\n", prob, voc_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
box b = float_to_box(predictions+box_index);
b.x = (b.x + col)/side;
b.y = (b.y + row)/side;
b.w = b.w*b.w;
b.h = b.h*b.h;
//red = green = blue = 0;
box b = boxes[i];
int left = (b.x-b.w/2)*im.w;
int right = (b.x+b.w/2)*im.w;
int top = (b.y-b.h/2)*im.h;
int bot = (b.y+b.h/2)*im.h;
int left = (b.x-b.w/2.)*im.w;
int right = (b.x+b.w/2.)*im.w;
int top = (b.y-b.h/2.)*im.h;
int bot = (b.y+b.h/2.)*im.h;
draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
}
show_image(im, label);
}
void train_swag(char *cfgfile, char *weightfile)
{
//char *train_images = "/home/pjreddie/data/voc/person_detection/2010_person.txt";
//char *train_images = "/home/pjreddie/data/people-art/train.txt";
//char *train_images = "/home/pjreddie/data/voc/test/2012_trainval.txt";
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
//char *train_images = "/home/pjreddie/data/voc/test/train_all.txt";
//char *train_images = "/home/pjreddie/data/voc/test/2007_trainval.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
@ -116,7 +110,7 @@ void train_swag(char *cfgfile, char *weightfile)
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@ -189,6 +183,9 @@ void validate_swag(char *cfgfile, char *weightfile)
srand(time(0));
char *base = "results/comp4_det_test_";
//base = "/home/pjreddie/comp4_det_test_";
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
//list *plist = get_paths("/home/pjreddie/data/cubist/test.txt");
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
@ -216,7 +213,7 @@ void validate_swag(char *cfgfile, char *weightfile)
int nms = 1;
float iou_thresh = .5;
int nthreads = 8;
int nthreads = 2;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
@ -256,7 +253,7 @@ void validate_swag(char *cfgfile, char *weightfile)
int w = val[t].w;
int h = val[t].h;
convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh);
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
free(id);
free_image(val[t]);
@ -315,8 +312,6 @@ void validate_swag_recall(char *cfgfile, char *weightfile)
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
float *predictions = network_predict(net, sized.data);
int w = orig.w;
int h = orig.h;
convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
@ -362,12 +357,17 @@ void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
if(weightfile){
load_weights(&net, weightfile);
}
region_layer layer = net.layers[net.n-1];
region_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
int j;
float nms=.5;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
while(1){
if(filename){
strncpy(input, filename, 256);
@ -384,7 +384,10 @@ void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
show_image(sized, "resized");
free_image(im);
free_image(sized);
@ -396,6 +399,48 @@ void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
}
}
/*
#ifdef OPENCV
image ipl_to_image(IplImage* src);
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/imgproc/imgproc_c.h"
void demo_swag(char *cfgfile, char *weightfile, float thresh)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
region_layer layer = net.layers[net.n-1];
CvCapture *capture = cvCaptureFromCAM(-1);
set_batch_network(&net, 1);
srand(2222222);
while(1){
IplImage* frame = cvQueryFrame(capture);
image im = ipl_to_image(frame);
cvReleaseImage(&frame);
rgbgr_image(im);
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
float *predictions = network_predict(net, X);
draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
free_image(im);
free_image(sized);
cvWaitKey(10);
}
}
#else
void demo_swag(char *cfgfile, char *weightfile, float thresh){}
#endif
*/
void demo_swag(char *cfgfile, char *weightfile, float thresh);
#ifndef GPU
void demo_swag(char *cfgfile, char *weightfile, float thresh){}
#endif
void run_swag(int argc, char **argv)
{
float thresh = find_float_arg(argc, argv, "-thresh", .2);
@ -411,4 +456,5 @@ void run_swag(int argc, char **argv)
else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights);
else if(0==strcmp(argv[2], "demo")) demo_swag(cfg, weights, thresh);
}

61
src/swag_kernels.cu Normal file
View File

@ -0,0 +1,61 @@
extern "C" {
#include "network.h"
#include "region_layer.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#include "image.h"
}
#ifdef OPENCV
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
extern "C" image ipl_to_image(IplImage* src);
extern "C" void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
extern "C" void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label);
extern "C" void demo_swag(char *cfgfile, char *weightfile, float thresh)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
region_layer l = net.layers[net.n-1];
cv::VideoCapture cap(0);
set_batch_network(&net, 1);
srand(2222222);
float nms = .4;
int j;
box *boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
float **probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
while(1){
cv::Mat frame_m;
cap >> frame_m;
IplImage frame = frame_m;
image im = ipl_to_image(&frame);
rgbgr_image(im);
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
float *predictions = network_predict(net, X);
convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
printf("\033[2J");
printf("\033[1;1H");
printf("\nObjects:\n\n");
draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
free_image(im);
free_image(sized);
cvWaitKey(1);
}
}
#else
extern "C" void demo_swag(char *cfgfile, char *weightfile, float thresh){}
#endif