mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
CVPR Experiments
This commit is contained in:
parent
c40cdeb402
commit
8fd18add6e
3
Makefile
3
Makefile
@ -3,6 +3,7 @@ OPENCV=1
|
||||
DEBUG=0
|
||||
|
||||
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
|
||||
ARCH= -arch=sm_52 --use_fast_math
|
||||
|
||||
VPATH=./src/
|
||||
EXEC=darknet
|
||||
@ -36,7 +37,7 @@ endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o region_layer.o layer.o compare.o swag.o classifier.o
|
||||
ifeq ($(GPU), 1)
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o swag_kernels.o
|
||||
endif
|
||||
|
||||
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
||||
|
@ -4,10 +4,16 @@ subdivisions=4
|
||||
height=256
|
||||
width=256
|
||||
channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
|
||||
learning_rate=0.01
|
||||
policy=steps
|
||||
scales=.1,.1,.1
|
||||
steps=200000,300000,400000
|
||||
max_batches=800000
|
||||
|
||||
|
||||
[crop]
|
||||
crop_height=224
|
||||
crop_width=224
|
||||
@ -15,6 +21,7 @@ flip=1
|
||||
angle=0
|
||||
saturation=1
|
||||
exposure=1
|
||||
shift=.2
|
||||
|
||||
[convolutional]
|
||||
filters=64
|
||||
@ -160,9 +167,6 @@ activation=ramp
|
||||
size=3
|
||||
stride=2
|
||||
|
||||
[dropout]
|
||||
probability=0.5
|
||||
|
||||
[connected]
|
||||
output=4096
|
||||
activation=ramp
|
||||
|
179
cfg/yolo.cfg
179
cfg/yolo.cfg
@ -1,210 +1,235 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=4
|
||||
subdivisions=2
|
||||
height=448
|
||||
width=448
|
||||
channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
|
||||
learning_rate=0.001
|
||||
policy=steps
|
||||
steps=20000
|
||||
scales=.1
|
||||
max_batches = 35000
|
||||
steps=100,200,300,400,500,600,700,20000,30000
|
||||
scales=2,2,1.25,1.25,1.25,1.25,1.03,.1,.1
|
||||
max_batches = 40000
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
crop_height=448
|
||||
flip=0
|
||||
angle=0
|
||||
saturation = 2
|
||||
exposure = 2
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
|
||||
[convolutional]
|
||||
filters=64
|
||||
size=7
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
filters=192
|
||||
size=3
|
||||
stride=2
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
#######
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[connected]
|
||||
output=4096
|
||||
activation=ramp
|
||||
activation=leaky
|
||||
|
||||
[dropout]
|
||||
probability=.5
|
||||
|
||||
[connected]
|
||||
output=1225
|
||||
activation=logistic
|
||||
output= 1470
|
||||
activation=linear
|
||||
|
||||
[detection]
|
||||
[region]
|
||||
classes=20
|
||||
coords=4
|
||||
rescore=0
|
||||
joint=0
|
||||
objectness=1
|
||||
background=0
|
||||
rescore=1
|
||||
side=7
|
||||
num=2
|
||||
softmax=0
|
||||
sqrt=1
|
||||
jitter=.2
|
||||
|
||||
object_scale=1
|
||||
noobject_scale=.5
|
||||
class_scale=1
|
||||
coord_scale=5
|
||||
|
||||
|
45
src/blas.c
45
src/blas.c
@ -1,6 +1,51 @@
|
||||
#include "blas.h"
|
||||
#include "math.h"
|
||||
|
||||
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
|
||||
{
|
||||
float scale = 1./(batch * spatial);
|
||||
int i,j,k;
|
||||
for(i = 0; i < filters; ++i){
|
||||
mean[i] = 0;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
mean[i] += x[index];
|
||||
}
|
||||
}
|
||||
mean[i] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
|
||||
{
|
||||
float scale = 1./(batch * spatial);
|
||||
int i,j,k;
|
||||
for(i = 0; i < filters; ++i){
|
||||
variance[i] = 0;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
variance[i] += pow((x[index] - mean[i]), 2);
|
||||
}
|
||||
}
|
||||
variance[i] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
|
||||
{
|
||||
int b, f, i;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(f = 0; f < filters; ++f){
|
||||
for(i = 0; i < spatial; ++i){
|
||||
int index = b*filters*spatial + f*spatial + i;
|
||||
x[index] = (x[index] - mean[f])/(sqrt(variance[f]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void const_cpu(int N, float ALPHA, float *X, int INCX)
|
||||
{
|
||||
int i;
|
||||
|
18
src/blas.h
18
src/blas.h
@ -16,6 +16,10 @@ void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void test_gpu_blas();
|
||||
|
||||
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
|
||||
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
||||
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
||||
|
||||
#ifdef GPU
|
||||
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
||||
void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
||||
@ -26,6 +30,20 @@ void mask_ongpu(int N, float * X, float mask_num, float * mask);
|
||||
void const_ongpu(int N, float ALPHA, float *X, int INCX);
|
||||
void pow_ongpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
||||
void mul_ongpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void fill_ongpu(int N, float ALPHA, float * X, int INCX);
|
||||
|
||||
void mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
|
||||
void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
||||
void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
||||
|
||||
void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
|
||||
void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
|
||||
void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
|
||||
|
||||
void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta);
|
||||
void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta);
|
||||
|
||||
void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance);
|
||||
void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean);
|
||||
#endif
|
||||
#endif
|
||||
|
@ -4,6 +4,181 @@ extern "C" {
|
||||
#include "utils.h"
|
||||
}
|
||||
|
||||
__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
|
||||
{
|
||||
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (index >= N) return;
|
||||
int f = (index/spatial)%filters;
|
||||
|
||||
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
|
||||
}
|
||||
|
||||
__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
|
||||
{
|
||||
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (index >= N) return;
|
||||
int f = (index/spatial)%filters;
|
||||
|
||||
delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
|
||||
}
|
||||
|
||||
extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
|
||||
{
|
||||
size_t N = batch*filters*spatial;
|
||||
normalize_delta_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= filters) return;
|
||||
int j,k;
|
||||
variance_delta[i] = 0;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
variance_delta[i] += delta[index]*(x[index] - mean[i]);
|
||||
}
|
||||
}
|
||||
variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
|
||||
}
|
||||
|
||||
__global__ void spatial_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= batch*filters) return;
|
||||
int f = i%filters;
|
||||
int b = i/filters;
|
||||
|
||||
int k;
|
||||
spatial_variance_delta[i] = 0;
|
||||
for (k = 0; k < spatial; ++k) {
|
||||
int index = b*filters*spatial + f*spatial + k;
|
||||
spatial_variance_delta[i] += delta[index]*(x[index] - mean[f]);
|
||||
}
|
||||
spatial_variance_delta[i] *= -.5 * pow(variance[f] + .00001f, (float)(-3./2.));
|
||||
}
|
||||
|
||||
extern "C" void variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
|
||||
{
|
||||
variance_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, variance_delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
|
||||
{
|
||||
int k;
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= groups) return;
|
||||
sum[i] = 0;
|
||||
for(k = 0; k < n; ++k){
|
||||
sum[i] += x[k*groups + i];
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *spatial_variance_delta, float *variance_delta)
|
||||
{
|
||||
spatial_variance_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, spatial_variance_delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance_delta, batch, filters, variance_delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void spatial_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= batch*filters) return;
|
||||
int f = i%filters;
|
||||
int b = i/filters;
|
||||
|
||||
int k;
|
||||
spatial_mean_delta[i] = 0;
|
||||
for (k = 0; k < spatial; ++k) {
|
||||
int index = b*filters*spatial + f*spatial + k;
|
||||
spatial_mean_delta[i] += delta[index];
|
||||
}
|
||||
spatial_mean_delta[i] *= (-1./sqrt(variance[f] + .00001f));
|
||||
}
|
||||
|
||||
extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *spatial_mean_delta, float *mean_delta)
|
||||
{
|
||||
spatial_mean_delta_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(delta, variance, batch, filters, spatial, spatial_mean_delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean_delta, batch, filters, mean_delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= filters) return;
|
||||
int j,k;
|
||||
mean_delta[i] = 0;
|
||||
for (j = 0; j < batch; ++j) {
|
||||
for (k = 0; k < spatial; ++k) {
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
mean_delta[i] += delta[index];
|
||||
}
|
||||
}
|
||||
mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
|
||||
}
|
||||
|
||||
extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
|
||||
{
|
||||
mean_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
|
||||
{
|
||||
float scale = 1./(batch * spatial);
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= filters) return;
|
||||
int j,k;
|
||||
mean[i] = 0;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
mean[i] += x[index];
|
||||
}
|
||||
}
|
||||
mean[i] *= scale;
|
||||
}
|
||||
|
||||
__global__ void spatial_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
|
||||
{
|
||||
float scale = 1./(spatial*batch-1);
|
||||
int k;
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= batch*filters) return;
|
||||
int f = i%filters;
|
||||
int b = i/filters;
|
||||
|
||||
variance[i] = 0;
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = b*filters*spatial + f*spatial + k;
|
||||
variance[i] += pow((x[index] - mean[f]), 2);
|
||||
}
|
||||
variance[i] *= scale;
|
||||
}
|
||||
|
||||
__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
|
||||
{
|
||||
float scale = 1./(batch * spatial);
|
||||
int j,k;
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (i >= filters) return;
|
||||
variance[i] = 0;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
variance[i] += pow((x[index] - mean[i]), 2);
|
||||
}
|
||||
}
|
||||
variance[i] *= scale;
|
||||
}
|
||||
|
||||
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
@ -28,6 +203,12 @@ __global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
|
||||
if(i < N) X[i*INCX] *= ALPHA;
|
||||
}
|
||||
|
||||
__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < N) X[i*INCX] = ALPHA;
|
||||
}
|
||||
|
||||
__global__ void mask_kernel(int n, float *x, float mask_num, float *mask)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
@ -46,6 +227,41 @@ __global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY)
|
||||
if(i < N) Y[i*INCY] *= X[i*INCX];
|
||||
}
|
||||
|
||||
extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
|
||||
{
|
||||
size_t N = batch*filters*spatial;
|
||||
normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
|
||||
{
|
||||
mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, batch, filters, spatial, mean);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *spatial_mean, float *mean)
|
||||
{
|
||||
mean_kernel<<<cuda_gridsize(filters*batch), BLOCK>>>(x, 1, filters*batch, spatial, spatial_mean);
|
||||
check_error(cudaPeekAtLastError());
|
||||
mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_mean, batch, filters, 1, mean);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *spatial_variance, float *variance)
|
||||
{
|
||||
spatial_variance_kernel<<<cuda_gridsize(batch*filters), BLOCK>>>(x, mean, batch, filters, spatial, spatial_variance);
|
||||
check_error(cudaPeekAtLastError());
|
||||
accumulate_kernel<<<cuda_gridsize(filters), BLOCK>>>(spatial_variance, batch, filters, variance);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
|
||||
{
|
||||
variance_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, mean, batch, filters, spatial, variance);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
|
||||
{
|
||||
axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY);
|
||||
@ -97,3 +313,9 @@ extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
|
||||
scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
|
||||
{
|
||||
fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
47
src/box.c
47
src/box.c
@ -1,6 +1,7 @@
|
||||
#include "box.h"
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
box float_to_box(float *f)
|
||||
{
|
||||
@ -229,6 +230,52 @@ dbox diou(box a, box b)
|
||||
return dd;
|
||||
}
|
||||
|
||||
typedef struct{
|
||||
int index;
|
||||
int class;
|
||||
float **probs;
|
||||
} sortable_bbox;
|
||||
|
||||
int nms_comparator(const void *pa, const void *pb)
|
||||
{
|
||||
sortable_bbox a = *(sortable_bbox *)pa;
|
||||
sortable_bbox b = *(sortable_bbox *)pb;
|
||||
float diff = a.probs[a.index][b.class] - b.probs[b.index][b.class];
|
||||
if(diff < 0) return 1;
|
||||
else if(diff > 0) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh)
|
||||
{
|
||||
int i, j, k;
|
||||
sortable_bbox *s = calloc(total, sizeof(sortable_bbox));
|
||||
|
||||
for(i = 0; i < total; ++i){
|
||||
s[i].index = i;
|
||||
s[i].class = 0;
|
||||
s[i].probs = probs;
|
||||
}
|
||||
|
||||
for(k = 0; k < classes; ++k){
|
||||
for(i = 0; i < total; ++i){
|
||||
s[i].class = k;
|
||||
}
|
||||
qsort(s, total, sizeof(sortable_bbox), nms_comparator);
|
||||
for(i = 0; i < total; ++i){
|
||||
if(probs[s[i].index][k] == 0) continue;
|
||||
box a = boxes[s[i].index];
|
||||
for(j = i+1; j < total; ++j){
|
||||
box b = boxes[s[j].index];
|
||||
if (box_iou(a, b) > thresh){
|
||||
probs[s[j].index][k] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
free(s);
|
||||
}
|
||||
|
||||
void do_nms(box *boxes, float **probs, int total, int classes, float thresh)
|
||||
{
|
||||
int i, j, k;
|
||||
|
@ -14,6 +14,7 @@ float box_iou(box a, box b);
|
||||
float box_rmse(box a, box b);
|
||||
dbox diou(box a, box b);
|
||||
void do_nms(box *boxes, float **probs, int total, int classes, float thresh);
|
||||
void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh);
|
||||
box decode_box(box b, box anchor);
|
||||
box encode_box(box b, box anchor);
|
||||
|
||||
|
316
src/classifier.c
Normal file
316
src/classifier.c
Normal file
@ -0,0 +1,316 @@
|
||||
#include "network.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "option_list.h"
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
|
||||
list *read_data_cfg(char *filename)
|
||||
{
|
||||
FILE *file = fopen(filename, "r");
|
||||
if(file == 0) file_error(filename);
|
||||
char *line;
|
||||
int nu = 0;
|
||||
list *options = make_list();
|
||||
while((line=fgetl(file)) != 0){
|
||||
++ nu;
|
||||
strip(line);
|
||||
switch(line[0]){
|
||||
case '\0':
|
||||
case '#':
|
||||
case ';':
|
||||
free(line);
|
||||
break;
|
||||
default:
|
||||
if(!read_option(line, options)){
|
||||
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
|
||||
free(line);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
fclose(file);
|
||||
return options;
|
||||
}
|
||||
|
||||
void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
|
||||
{
|
||||
data_seed = time(0);
|
||||
srand(time(0));
|
||||
float avg_loss = -1;
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1024;
|
||||
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *backup_directory = option_find_str(options, "backup", "/backup/");
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
char *train_list = option_find_str(options, "train", "data/train.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(train_list);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
printf("%d\n", plist->size);
|
||||
int N = plist->size;
|
||||
clock_t time;
|
||||
pthread_t load_thread;
|
||||
data train;
|
||||
data buffer;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.paths = paths;
|
||||
args.classes = classes;
|
||||
args.n = imgs;
|
||||
args.m = N;
|
||||
args.labels = labels;
|
||||
args.d = &buffer;
|
||||
args.type = CLASSIFICATION_DATA;
|
||||
|
||||
load_thread = load_data_in_thread(args);
|
||||
int epoch = (*net.seen)/N;
|
||||
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
|
||||
load_thread = load_data_in_thread(args);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
}
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
|
||||
pthread_join(load_thread, 0);
|
||||
free_data(buffer);
|
||||
free_network(net);
|
||||
free_ptrs((void**)labels, classes);
|
||||
free_ptrs((void**)paths, plist->size);
|
||||
free_list(plist);
|
||||
free(base);
|
||||
}
|
||||
|
||||
void validate_classifier(char *datacfg, char *filename, char *weightfile)
|
||||
{
|
||||
int i = 0;
|
||||
network net = parse_network_cfg(filename);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
char *valid_list = option_find_str(options, "valid", "data/train.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
int topk = option_find_int(options, "topk", 1);
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(valid_list);
|
||||
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int m = plist->size;
|
||||
free_list(plist);
|
||||
|
||||
clock_t time;
|
||||
float avg_acc = 0;
|
||||
float avg_topk = 0;
|
||||
int splits = 50;
|
||||
int num = (i+1)*m/splits - i*m/splits;
|
||||
|
||||
data val, buffer;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.paths = paths;
|
||||
args.classes = classes;
|
||||
args.n = num;
|
||||
args.m = 0;
|
||||
args.labels = labels;
|
||||
args.d = &buffer;
|
||||
args.type = CLASSIFICATION_DATA;
|
||||
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
for(i = 1; i <= splits; ++i){
|
||||
time=clock();
|
||||
|
||||
pthread_join(load_thread, 0);
|
||||
val = buffer;
|
||||
|
||||
num = (i+1)*m/splits - i*m/splits;
|
||||
char **part = paths+(i*m/splits);
|
||||
if(i != splits){
|
||||
args.paths = part;
|
||||
load_thread = load_data_in_thread(args);
|
||||
}
|
||||
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
float *acc = network_accuracies(net, val, topk);
|
||||
avg_acc += acc[0];
|
||||
avg_topk += acc[1];
|
||||
printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows);
|
||||
free_data(val);
|
||||
}
|
||||
}
|
||||
|
||||
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
int top = option_find_int(options, "top", 1);
|
||||
|
||||
int i = 0;
|
||||
char **names = get_labels(label_list);
|
||||
clock_t time;
|
||||
int indexes[10];
|
||||
char buff[256];
|
||||
char *input = buff;
|
||||
while(1){
|
||||
if(filename){
|
||||
strncpy(input, filename, 256);
|
||||
}else{
|
||||
printf("Enter Image Path: ");
|
||||
fflush(stdout);
|
||||
input = fgets(input, 256, stdin);
|
||||
if(!input) return;
|
||||
strtok(input, "\n");
|
||||
}
|
||||
image im = load_image_color(input, 256, 256);
|
||||
float *X = im.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
top_predictions(net, top, indexes);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
for(i = 0; i < top; ++i){
|
||||
int index = indexes[i];
|
||||
printf("%s: %f\n", names[index], predictions[index]);
|
||||
}
|
||||
free_image(im);
|
||||
if (filename) break;
|
||||
}
|
||||
}
|
||||
|
||||
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer)
|
||||
{
|
||||
int curr = 0;
|
||||
network net = parse_network_cfg(filename);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *test_list = option_find_str(options, "test", "data/test.list");
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(test_list);
|
||||
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int m = plist->size;
|
||||
free_list(plist);
|
||||
|
||||
clock_t time;
|
||||
|
||||
data val, buffer;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.paths = paths;
|
||||
args.classes = classes;
|
||||
args.n = net.batch;
|
||||
args.m = 0;
|
||||
args.labels = labels;
|
||||
args.d = &buffer;
|
||||
args.type = CLASSIFICATION_DATA;
|
||||
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
for(curr = net.batch; curr < m; curr += net.batch){
|
||||
time=clock();
|
||||
|
||||
pthread_join(load_thread, 0);
|
||||
val = buffer;
|
||||
|
||||
if(curr < m){
|
||||
args.paths = paths + curr;
|
||||
if (curr + net.batch > m) args.n = m - curr;
|
||||
load_thread = load_data_in_thread(args);
|
||||
}
|
||||
fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
matrix pred = network_predict_data(net, val);
|
||||
|
||||
int i;
|
||||
if (target_layer >= 0){
|
||||
//layer l = net.layers[target_layer];
|
||||
}
|
||||
|
||||
for(i = 0; i < val.X.rows; ++i){
|
||||
|
||||
}
|
||||
|
||||
free_matrix(pred);
|
||||
|
||||
fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows);
|
||||
free_data(val);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void run_classifier(int argc, char **argv)
|
||||
{
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
}
|
||||
|
||||
char *data = argv[3];
|
||||
char *cfg = argv[4];
|
||||
char *weights = (argc > 5) ? argv[5] : 0;
|
||||
char *filename = (argc > 6) ? argv[6]: 0;
|
||||
char *layer_s = (argc > 7) ? argv[7]: 0;
|
||||
int layer = layer_s ? atoi(layer_s) : -1;
|
||||
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
|
||||
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
|
||||
}
|
||||
|
||||
|
458
src/coco.c
458
src/coco.c
@ -1,7 +1,7 @@
|
||||
#include <stdio.h>
|
||||
|
||||
#include "network.h"
|
||||
#include "detection_layer.h"
|
||||
#include "region_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
@ -15,32 +15,27 @@ char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","
|
||||
|
||||
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
|
||||
void draw_coco(image im, float *pred, int side, char *label)
|
||||
void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
|
||||
{
|
||||
int classes = 1;
|
||||
int elems = 4+classes;
|
||||
int j;
|
||||
int r, c;
|
||||
int classes = 80;
|
||||
int i;
|
||||
|
||||
for(r = 0; r < side; ++r){
|
||||
for(c = 0; c < side; ++c){
|
||||
j = (r*side + c) * elems;
|
||||
int class = max_index(pred+j, classes);
|
||||
if (pred[j+class] > 0.2){
|
||||
int width = pred[j+class]*5 + 1;
|
||||
printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
|
||||
for(i = 0; i < num; ++i){
|
||||
int class = max_index(probs[i], classes);
|
||||
float prob = probs[i][class];
|
||||
if(prob > thresh){
|
||||
int width = sqrt(prob)*5 + 1;
|
||||
printf("%f %s\n", prob, coco_classes[class]);
|
||||
float red = get_color(0,class,classes);
|
||||
float green = get_color(1,class,classes);
|
||||
float blue = get_color(2,class,classes);
|
||||
box b = boxes[i];
|
||||
|
||||
j += classes;
|
||||
|
||||
box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
|
||||
predict.x = (predict.x+c)/side;
|
||||
predict.y = (predict.y+r)/side;
|
||||
|
||||
draw_bbox(im, predict, width, red, green, blue);
|
||||
}
|
||||
int left = (b.x-b.w/2.)*im.w;
|
||||
int right = (b.x+b.w/2.)*im.w;
|
||||
int top = (b.y-b.h/2.)*im.h;
|
||||
int bot = (b.y+b.h/2.)*im.h;
|
||||
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
||||
}
|
||||
}
|
||||
show_image(im, label);
|
||||
@ -48,8 +43,8 @@ void draw_coco(image im, float *pred, int side, char *label)
|
||||
|
||||
void train_coco(char *cfgfile, char *weightfile)
|
||||
{
|
||||
//char *train_images = "/home/pjreddie/data/coco/train.txt";
|
||||
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
|
||||
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
|
||||
char *train_images = "/home/pjreddie/data/coco/train.txt";
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
srand(time(0));
|
||||
data_seed = time(0);
|
||||
@ -61,7 +56,7 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 128;
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
int i = *net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
@ -70,9 +65,10 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
|
||||
int side = l.side;
|
||||
int classes = l.classes;
|
||||
float jitter = l.jitter;
|
||||
|
||||
list *plist = get_paths(train_images);
|
||||
int N = plist->size;
|
||||
//int N = plist->size;
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
load_args args = {0};
|
||||
@ -82,13 +78,15 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
args.n = imgs;
|
||||
args.m = plist->size;
|
||||
args.classes = classes;
|
||||
args.jitter = jitter;
|
||||
args.num_boxes = side;
|
||||
args.d = &buffer;
|
||||
args.type = REGION_DATA;
|
||||
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
clock_t time;
|
||||
while(i*imgs < N*120){
|
||||
//while(i*imgs < N*120){
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
@ -97,7 +95,7 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
||||
/*
|
||||
/*
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
|
||||
image copy = copy_image(im);
|
||||
draw_coco(copy, train.y.vals[113], 7, "truth");
|
||||
@ -110,7 +108,7 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
if(i%1000==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
@ -123,60 +121,38 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
void get_probs(float *predictions, int total, int classes, int inc, float **probs)
|
||||
void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
||||
{
|
||||
int i,j;
|
||||
for (i = 0; i < total; ++i){
|
||||
int index = i*inc;
|
||||
float scale = predictions[index];
|
||||
probs[i][0] = scale;
|
||||
int i,j,n;
|
||||
//int per_cell = 5*num+classes;
|
||||
for (i = 0; i < side*side; ++i){
|
||||
int row = i / side;
|
||||
int col = i % side;
|
||||
for(n = 0; n < num; ++n){
|
||||
int index = i*num + n;
|
||||
int p_index = side*side*classes + i*num + n;
|
||||
float scale = predictions[p_index];
|
||||
int box_index = side*side*(classes + num) + (i*num + n)*4;
|
||||
boxes[index].x = (predictions[box_index + 0] + col) / side * w;
|
||||
boxes[index].y = (predictions[box_index + 1] + row) / side * h;
|
||||
boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
|
||||
boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
|
||||
for(j = 0; j < classes; ++j){
|
||||
probs[i][j] = scale*predictions[index+j+1];
|
||||
int class_index = i*classes;
|
||||
float prob = scale*predictions[class_index+j];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
if(only_objectness){
|
||||
probs[index][0] = scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
|
||||
{
|
||||
int i,j;
|
||||
for (i = 0; i < num_boxes*num_boxes; ++i){
|
||||
for(j = 0; j < n; ++j){
|
||||
int index = i*n+j;
|
||||
int offset = index*per_box;
|
||||
int row = i / num_boxes;
|
||||
int col = i % num_boxes;
|
||||
boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
|
||||
boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
|
||||
boxes[index].w = predictions[offset + 2];
|
||||
boxes[index].h = predictions[offset + 3];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
|
||||
{
|
||||
int i,j;
|
||||
int per_box = 4+classes;
|
||||
for (i = 0; i < num_boxes*num_boxes*num; ++i){
|
||||
int offset = i*per_box;
|
||||
for(j = 0; j < classes; ++j){
|
||||
float prob = predictions[offset+j];
|
||||
probs[i][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
int row = i / num_boxes;
|
||||
int col = i % num_boxes;
|
||||
offset += classes;
|
||||
boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
|
||||
boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
|
||||
boxes[i].w = predictions[offset + 2];
|
||||
boxes[i].h = predictions[offset + 3];
|
||||
}
|
||||
}
|
||||
|
||||
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < num_boxes*num_boxes; ++i){
|
||||
for(i = 0; i < num_boxes; ++i){
|
||||
float xmin = boxes[i].x - boxes[i].w/2.;
|
||||
float xmax = boxes[i].x + boxes[i].w/2.;
|
||||
float ymin = boxes[i].y - boxes[i].h/2.;
|
||||
@ -204,201 +180,6 @@ int get_coco_image_id(char *filename)
|
||||
return atoi(p+1);
|
||||
}
|
||||
|
||||
void validate_recall(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
|
||||
list *plist = get_paths(val_images);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
|
||||
int num_boxes = l.side;
|
||||
int num = l.n;
|
||||
int classes = l.classes;
|
||||
|
||||
int j;
|
||||
|
||||
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
|
||||
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
|
||||
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
|
||||
|
||||
int N = plist->size;
|
||||
int i=0;
|
||||
int k;
|
||||
|
||||
float iou_thresh = .5;
|
||||
float thresh = .1;
|
||||
int total = 0;
|
||||
int correct = 0;
|
||||
float avg_iou = 0;
|
||||
int nms = 1;
|
||||
int proposals = 0;
|
||||
int save = 1;
|
||||
|
||||
for (i = 0; i < N; ++i) {
|
||||
char *path = paths[i];
|
||||
image orig = load_image_color(path, 0, 0);
|
||||
image resized = resize_image(orig, net.w, net.h);
|
||||
|
||||
float *X = resized.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
|
||||
get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
|
||||
if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
|
||||
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||
|
||||
int num_labels = 0;
|
||||
box_label *truth = read_boxes(labelpath, &num_labels);
|
||||
for(k = 0; k < num_boxes*num_boxes*num; ++k){
|
||||
if(probs[k][0] > thresh){
|
||||
++proposals;
|
||||
if(save){
|
||||
char buff[256];
|
||||
sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
|
||||
int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
|
||||
int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
|
||||
int w = boxes[k].w * orig.w;
|
||||
int h = boxes[k].h * orig.h;
|
||||
image cropped = crop_image(orig, dx, dy, w, h);
|
||||
image sized = resize_image(cropped, 224, 224);
|
||||
#ifdef OPENCV
|
||||
save_image_jpg(sized, buff);
|
||||
#endif
|
||||
free_image(sized);
|
||||
free_image(cropped);
|
||||
sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
|
||||
char *im_id = basecfg(path);
|
||||
FILE *fp = fopen(buff, "w");
|
||||
fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
|
||||
fclose(fp);
|
||||
free(im_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (j = 0; j < num_labels; ++j) {
|
||||
++total;
|
||||
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
||||
float best_iou = 0;
|
||||
for(k = 0; k < num_boxes*num_boxes*num; ++k){
|
||||
float iou = box_iou(boxes[k], t);
|
||||
if(probs[k][0] > thresh && iou > best_iou){
|
||||
best_iou = iou;
|
||||
}
|
||||
}
|
||||
avg_iou += best_iou;
|
||||
if(best_iou > iou_thresh){
|
||||
++correct;
|
||||
}
|
||||
}
|
||||
free(truth);
|
||||
free_image(orig);
|
||||
free_image(resized);
|
||||
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
|
||||
}
|
||||
}
|
||||
|
||||
void extract_boxes(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *val_images = "/home/pjreddie/data/voc/test/train.txt";
|
||||
list *plist = get_paths(val_images);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
|
||||
int num_boxes = l.side;
|
||||
int num = l.n;
|
||||
int classes = l.classes;
|
||||
|
||||
int j;
|
||||
|
||||
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
|
||||
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
|
||||
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
|
||||
|
||||
int N = plist->size;
|
||||
int i=0;
|
||||
int k;
|
||||
|
||||
int count = 0;
|
||||
float iou_thresh = .3;
|
||||
|
||||
for (i = 0; i < N; ++i) {
|
||||
fprintf(stderr, "%5d %5d\n", i, count);
|
||||
char *path = paths[i];
|
||||
image orig = load_image_color(path, 0, 0);
|
||||
image resized = resize_image(orig, net.w, net.h);
|
||||
|
||||
float *X = resized.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
|
||||
get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
|
||||
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||
|
||||
int num_labels = 0;
|
||||
box_label *truth = read_boxes(labelpath, &num_labels);
|
||||
FILE *label = stdin;
|
||||
for(k = 0; k < num_boxes*num_boxes*num; ++k){
|
||||
int overlaps = 0;
|
||||
for (j = 0; j < num_labels; ++j) {
|
||||
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
||||
float iou = box_iou(boxes[k], t);
|
||||
if (iou > iou_thresh){
|
||||
if (!overlaps) {
|
||||
char buff[256];
|
||||
sprintf(buff, "/data/extracted/labels/%d.txt", count);
|
||||
label = fopen(buff, "w");
|
||||
overlaps = 1;
|
||||
}
|
||||
fprintf(label, "%d %f\n", truth[j].id, iou);
|
||||
}
|
||||
}
|
||||
if (overlaps) {
|
||||
char buff[256];
|
||||
sprintf(buff, "/data/extracted/imgs/%d", count++);
|
||||
int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
|
||||
int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
|
||||
int w = boxes[k].w * orig.w;
|
||||
int h = boxes[k].h * orig.h;
|
||||
image cropped = crop_image(orig, dx, dy, w, h);
|
||||
image sized = resize_image(cropped, 224, 224);
|
||||
#ifdef OPENCV
|
||||
save_image_jpg(sized, buff);
|
||||
#endif
|
||||
free_image(sized);
|
||||
free_image(cropped);
|
||||
fclose(label);
|
||||
}
|
||||
}
|
||||
free(truth);
|
||||
free_image(orig);
|
||||
free_image(resized);
|
||||
}
|
||||
}
|
||||
|
||||
void validate_coco(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
@ -409,13 +190,16 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *base = "/home/pjreddie/backup/";
|
||||
char *base = "results/";
|
||||
list *plist = get_paths("data/coco_val_5k.list");
|
||||
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
|
||||
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
int num_boxes = 9;
|
||||
int num = 4;
|
||||
int classes = 1;
|
||||
layer l = net.layers[net.n-1];
|
||||
int classes = l.classes;
|
||||
int square = l.sqrt;
|
||||
int side = l.side;
|
||||
|
||||
int j;
|
||||
char buff[1024];
|
||||
@ -423,29 +207,30 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
FILE *fp = fopen(buff, "w");
|
||||
fprintf(fp, "[\n");
|
||||
|
||||
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
|
||||
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
|
||||
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
box *boxes = calloc(side*side*l.n, sizeof(box));
|
||||
float **probs = calloc(side*side*l.n, sizeof(float *));
|
||||
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
|
||||
int m = plist->size;
|
||||
int i=0;
|
||||
int t;
|
||||
|
||||
float thresh = .01;
|
||||
float thresh = .001;
|
||||
int nms = 1;
|
||||
float iou_thresh = .5;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.type = IMAGE_DATA;
|
||||
|
||||
int nthreads = 8;
|
||||
image *val = calloc(nthreads, sizeof(image));
|
||||
image *val_resized = calloc(nthreads, sizeof(image));
|
||||
image *buf = calloc(nthreads, sizeof(image));
|
||||
image *buf_resized = calloc(nthreads, sizeof(image));
|
||||
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.type = IMAGE_DATA;
|
||||
|
||||
for(t = 0; t < nthreads; ++t){
|
||||
args.path = paths[i+t];
|
||||
args.im = &buf[t];
|
||||
@ -473,9 +258,9 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
float *predictions = network_predict(net, X);
|
||||
int w = val[t].w;
|
||||
int h = val[t].h;
|
||||
convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
|
||||
if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
|
||||
print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
|
||||
convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
|
||||
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
|
||||
free_image(val[t]);
|
||||
free_image(val_resized[t]);
|
||||
}
|
||||
@ -483,21 +268,114 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
fseek(fp, -2, SEEK_CUR);
|
||||
fprintf(fp, "\n]\n");
|
||||
fclose(fp);
|
||||
|
||||
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||||
}
|
||||
|
||||
void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||||
void validate_coco_recall(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *base = "results/comp4_det_test_";
|
||||
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
layer l = net.layers[net.n-1];
|
||||
int classes = l.classes;
|
||||
int square = l.sqrt;
|
||||
int side = l.side;
|
||||
|
||||
int j, k;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
for(j = 0; j < classes; ++j){
|
||||
char buff[1024];
|
||||
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
box *boxes = calloc(side*side*l.n, sizeof(box));
|
||||
float **probs = calloc(side*side*l.n, sizeof(float *));
|
||||
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
|
||||
int m = plist->size;
|
||||
int i=0;
|
||||
|
||||
float thresh = .001;
|
||||
int nms = 0;
|
||||
float iou_thresh = .5;
|
||||
float nms_thresh = .5;
|
||||
|
||||
int total = 0;
|
||||
int correct = 0;
|
||||
int proposals = 0;
|
||||
float avg_iou = 0;
|
||||
|
||||
for(i = 0; i < m; ++i){
|
||||
char *path = paths[i];
|
||||
image orig = load_image_color(path, 0, 0);
|
||||
image sized = resize_image(orig, net.w, net.h);
|
||||
char *id = basecfg(path);
|
||||
float *predictions = network_predict(net, sized.data);
|
||||
convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
|
||||
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
|
||||
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||
|
||||
int num_labels = 0;
|
||||
box_label *truth = read_boxes(labelpath, &num_labels);
|
||||
for(k = 0; k < side*side*l.n; ++k){
|
||||
if(probs[k][0] > thresh){
|
||||
++proposals;
|
||||
}
|
||||
}
|
||||
for (j = 0; j < num_labels; ++j) {
|
||||
++total;
|
||||
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
||||
float best_iou = 0;
|
||||
for(k = 0; k < side*side*l.n; ++k){
|
||||
float iou = box_iou(boxes[k], t);
|
||||
if(probs[k][0] > thresh && iou > best_iou){
|
||||
best_iou = iou;
|
||||
}
|
||||
}
|
||||
avg_iou += best_iou;
|
||||
if(best_iou > iou_thresh){
|
||||
++correct;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
|
||||
free(id);
|
||||
free_image(orig);
|
||||
free_image(sized);
|
||||
}
|
||||
}
|
||||
|
||||
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
{
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
region_layer l = net.layers[net.n-1];
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
char buff[256];
|
||||
char *input = buff;
|
||||
int j;
|
||||
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
|
||||
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
||||
while(1){
|
||||
if(filename){
|
||||
strncpy(input, filename, 256);
|
||||
@ -514,7 +392,10 @@ void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
draw_coco(im, predictions, 7, "predictions");
|
||||
convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
|
||||
|
||||
show_image(sized, "resized");
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
#ifdef OPENCV
|
||||
@ -527,6 +408,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||||
|
||||
void run_coco(int argc, char **argv)
|
||||
{
|
||||
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
@ -535,8 +417,8 @@ void run_coco(int argc, char **argv)
|
||||
char *cfg = argv[3];
|
||||
char *weights = (argc > 4) ? argv[4] : 0;
|
||||
char *filename = (argc > 5) ? argv[5]: 0;
|
||||
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
|
||||
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
|
||||
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
|
||||
}
|
||||
|
@ -307,7 +307,7 @@ void BattleRoyaleWithCheese(char *filename, char *weightfile)
|
||||
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
|
||||
N /= 2;
|
||||
|
||||
for(round = 1; round <= 20; ++round){
|
||||
for(round = 1; round <= 100; ++round){
|
||||
clock_t round_time=clock();
|
||||
printf("Round: %d\n", round);
|
||||
|
||||
@ -316,7 +316,7 @@ void BattleRoyaleWithCheese(char *filename, char *weightfile)
|
||||
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class);
|
||||
}
|
||||
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
|
||||
N = (N*9/10)/2*2;
|
||||
if(round <= 20) N = (N*9/10)/2*2;
|
||||
|
||||
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
|
||||
}
|
||||
|
@ -8,21 +8,65 @@ extern "C" {
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
|
||||
__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
|
||||
{
|
||||
int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int filter = blockIdx.y;
|
||||
int batch = blockIdx.z;
|
||||
|
||||
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
|
||||
if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter];
|
||||
}
|
||||
|
||||
void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
|
||||
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size)
|
||||
{
|
||||
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
|
||||
dim3 dimBlock(BLOCK, 1, 1);
|
||||
|
||||
bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
|
||||
scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
|
||||
{
|
||||
__shared__ float part[BLOCK];
|
||||
int i,b;
|
||||
int filter = blockIdx.x;
|
||||
int p = threadIdx.x;
|
||||
float sum = 0;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < size; i += BLOCK){
|
||||
int index = p + i + size*(filter + n*b);
|
||||
sum += (p+i < size) ? delta[index]*x_norm[index] : 0;
|
||||
}
|
||||
}
|
||||
part[p] = sum;
|
||||
__syncthreads();
|
||||
if (p == 0) {
|
||||
for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i];
|
||||
}
|
||||
}
|
||||
|
||||
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
|
||||
{
|
||||
backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void add_bias_kernel(float *output, float *biases, int n, int size)
|
||||
{
|
||||
int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int filter = blockIdx.y;
|
||||
int batch = blockIdx.z;
|
||||
|
||||
if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter];
|
||||
}
|
||||
|
||||
void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
|
||||
{
|
||||
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
|
||||
dim3 dimBlock(BLOCK, 1, 1);
|
||||
|
||||
add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
@ -41,7 +85,7 @@ __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batc
|
||||
}
|
||||
part[p] = sum;
|
||||
__syncthreads();
|
||||
if(p == 0){
|
||||
if (p == 0) {
|
||||
for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
|
||||
}
|
||||
}
|
||||
@ -52,53 +96,88 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
|
||||
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = convolutional_out_height(l)*
|
||||
convolutional_out_width(l);
|
||||
|
||||
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
|
||||
float * a = layer.filters_gpu;
|
||||
float * b = layer.col_image_gpu;
|
||||
float * c = layer.output_gpu;
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
|
||||
float * a = l.filters_gpu;
|
||||
float * b = l.col_image_gpu;
|
||||
float * c = l.output_gpu;
|
||||
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
|
||||
}
|
||||
activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
|
||||
|
||||
if(l.batch_normalize){
|
||||
if(state.train){
|
||||
fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu);
|
||||
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu);
|
||||
|
||||
scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
|
||||
axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
|
||||
scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
|
||||
axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
|
||||
|
||||
// cuda_pull_array(l.variance_gpu, l.mean, l.n);
|
||||
// printf("%f\n", l.mean[0]);
|
||||
|
||||
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
|
||||
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w);
|
||||
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
|
||||
} else {
|
||||
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w);
|
||||
}
|
||||
|
||||
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
|
||||
}
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
|
||||
|
||||
activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
|
||||
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
int m = l.n;
|
||||
int n = l.size*l.size*l.c;
|
||||
int k = convolutional_out_height(l)*
|
||||
convolutional_out_width(l);
|
||||
|
||||
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
|
||||
backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
|
||||
gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float * a = layer.delta_gpu;
|
||||
float * b = layer.col_image_gpu;
|
||||
float * c = layer.filter_updates_gpu;
|
||||
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
|
||||
|
||||
im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
|
||||
if(l.batch_normalize){
|
||||
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu);
|
||||
|
||||
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w);
|
||||
|
||||
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu);
|
||||
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu);
|
||||
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float * a = l.delta_gpu;
|
||||
float * b = l.col_image_gpu;
|
||||
float * c = l.filter_updates_gpu;
|
||||
|
||||
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
|
||||
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
|
||||
|
||||
if(state.delta){
|
||||
|
||||
float * a = layer.filters_gpu;
|
||||
float * b = layer.delta_gpu;
|
||||
float * c = layer.col_image_gpu;
|
||||
float * a = l.filters_gpu;
|
||||
float * b = l.delta_gpu;
|
||||
float * c = l.col_image_gpu;
|
||||
|
||||
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
|
||||
|
||||
col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
|
||||
col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -109,6 +188,11 @@ void pull_convolutional_layer(convolutional_layer layer)
|
||||
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
|
||||
cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
||||
if (layer.batch_normalize){
|
||||
cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
|
||||
cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
||||
cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
||||
}
|
||||
}
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer)
|
||||
@ -117,6 +201,11 @@ void push_convolutional_layer(convolutional_layer layer)
|
||||
cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
|
||||
cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
||||
if (layer.batch_normalize){
|
||||
cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
|
||||
cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
||||
cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
@ -126,8 +215,12 @@ void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float
|
||||
axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
||||
scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
|
||||
scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
|
||||
axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
|
||||
scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
|
||||
}
|
||||
|
||||
|
||||
|
@ -41,7 +41,7 @@ image get_convolutional_delta(convolutional_layer l)
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
|
||||
{
|
||||
int i;
|
||||
convolutional_layer l = {0};
|
||||
@ -55,18 +55,17 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
l.pad = pad;
|
||||
l.batch_normalize = batch_normalize;
|
||||
|
||||
l.filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
|
||||
l.biases = calloc(n, sizeof(float));
|
||||
l.bias_updates = calloc(n, sizeof(float));
|
||||
|
||||
// float scale = 1./sqrt(size*size*c);
|
||||
float scale = sqrt(2./(size*size*c));
|
||||
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
|
||||
for(i = 0; i < n; ++i){
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
l.out_h = out_h;
|
||||
@ -79,17 +78,55 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
if(batch_normalize){
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
l.scale_updates = calloc(n, sizeof(float));
|
||||
for(i = 0; i < n; ++i){
|
||||
l.scales[i] = 1;
|
||||
}
|
||||
|
||||
l.mean = calloc(n, sizeof(float));
|
||||
l.spatial_mean = calloc(n*l.batch, sizeof(float));
|
||||
|
||||
l.variance = calloc(n, sizeof(float));
|
||||
l.rolling_mean = calloc(n, sizeof(float));
|
||||
l.rolling_variance = calloc(n, sizeof(float));
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
||||
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
|
||||
|
||||
l.biases_gpu = cuda_make_array(l.biases, n);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
||||
|
||||
l.scales_gpu = cuda_make_array(l.scales, n);
|
||||
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
|
||||
|
||||
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
|
||||
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
||||
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
#endif
|
||||
|
||||
if(batch_normalize){
|
||||
l.mean_gpu = cuda_make_array(l.mean, n);
|
||||
l.variance_gpu = cuda_make_array(l.variance, n);
|
||||
|
||||
l.rolling_mean_gpu = cuda_make_array(l.mean, n);
|
||||
l.rolling_variance_gpu = cuda_make_array(l.variance, n);
|
||||
|
||||
l.spatial_mean_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
|
||||
l.spatial_variance_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
|
||||
|
||||
l.spatial_mean_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
|
||||
l.spatial_variance_delta_gpu = cuda_make_array(l.spatial_mean, n*l.batch);
|
||||
|
||||
l.mean_delta_gpu = cuda_make_array(l.mean, n);
|
||||
l.variance_delta_gpu = cuda_make_array(l.variance, n);
|
||||
|
||||
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
}
|
||||
#endif
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
@ -97,6 +134,42 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
return l;
|
||||
}
|
||||
|
||||
void denormalize_convolutional_layer(convolutional_layer l)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < l.n; ++i){
|
||||
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
|
||||
for(j = 0; j < l.c*l.size*l.size; ++j){
|
||||
l.filters[i*l.c*l.size*l.size + j] *= scale;
|
||||
}
|
||||
l.biases[i] -= l.rolling_mean[i] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
void test_convolutional_layer()
|
||||
{
|
||||
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
|
||||
l.batch_normalize = 1;
|
||||
float data[] = {1,1,1,1,1,
|
||||
1,1,1,1,1,
|
||||
1,1,1,1,1,
|
||||
1,1,1,1,1,
|
||||
1,1,1,1,1,
|
||||
2,2,2,2,2,
|
||||
2,2,2,2,2,
|
||||
2,2,2,2,2,
|
||||
2,2,2,2,2,
|
||||
2,2,2,2,2,
|
||||
3,3,3,3,3,
|
||||
3,3,3,3,3,
|
||||
3,3,3,3,3,
|
||||
3,3,3,3,3,
|
||||
3,3,3,3,3};
|
||||
network_state state = {0};
|
||||
state.input = data;
|
||||
forward_convolutional_layer(l, state);
|
||||
}
|
||||
|
||||
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
{
|
||||
l->w = w;
|
||||
@ -117,7 +190,7 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
l->delta = realloc(l->delta,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
cuda_free(l->col_image_gpu);
|
||||
cuda_free(l->delta_gpu);
|
||||
cuda_free(l->output_gpu);
|
||||
@ -125,7 +198,7 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void bias_output(float *output, float *biases, int batch, int n, int size)
|
||||
@ -150,7 +223,6 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void forward_convolutional_layer(const convolutional_layer l, network_state state)
|
||||
{
|
||||
int out_h = convolutional_out_height(l);
|
||||
@ -174,6 +246,13 @@ void forward_convolutional_layer(const convolutional_layer l, network_state stat
|
||||
c += n*m;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
|
||||
if(l.batch_normalize){
|
||||
mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);
|
||||
variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);
|
||||
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);
|
||||
}
|
||||
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
}
|
||||
|
||||
|
@ -17,11 +17,12 @@ void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float
|
||||
void push_convolutional_layer(convolutional_layer layer);
|
||||
void pull_convolutional_layer(convolutional_layer layer);
|
||||
|
||||
void bias_output_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
|
||||
#endif
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization);
|
||||
void denormalize_convolutional_layer(convolutional_layer l);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
|
||||
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
|
@ -91,7 +91,7 @@ __device__ float bilinear_interpolate_kernel(float *image, int w, int h, float x
|
||||
return val;
|
||||
}
|
||||
|
||||
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale)
|
||||
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale, float shift)
|
||||
{
|
||||
int size = batch * w * h;
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
@ -100,6 +100,9 @@ __global__ void levels_image_kernel(float *image, float *rand, int batch, int w,
|
||||
id /= w;
|
||||
int y = id % h;
|
||||
id /= h;
|
||||
float rshift = rand[0];
|
||||
float gshift = rand[1];
|
||||
float bshift = rand[2];
|
||||
float r0 = rand[8*id + 0];
|
||||
float r1 = rand[8*id + 1];
|
||||
float r2 = rand[8*id + 2];
|
||||
@ -121,10 +124,12 @@ __global__ void levels_image_kernel(float *image, float *rand, int batch, int w,
|
||||
hsv.y *= saturation;
|
||||
hsv.z *= exposure;
|
||||
rgb = hsv_to_rgb_kernel(hsv);
|
||||
} else {
|
||||
shift = 0;
|
||||
}
|
||||
image[x + w*(y + h*0)] = rgb.x*scale + translate;
|
||||
image[x + w*(y + h*1)] = rgb.y*scale + translate;
|
||||
image[x + w*(y + h*2)] = rgb.z*scale + translate;
|
||||
image[x + w*(y + h*0)] = rgb.x*scale + translate + (rshift - .5)*shift;
|
||||
image[x + w*(y + h*1)] = rgb.y*scale + translate + (gshift - .5)*shift;
|
||||
image[x + w*(y + h*2)] = rgb.z*scale + translate + (bshift - .5)*shift;
|
||||
}
|
||||
|
||||
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
|
||||
@ -186,7 +191,7 @@ extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
|
||||
|
||||
int size = layer.batch * layer.w * layer.h;
|
||||
|
||||
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale);
|
||||
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale, layer.shift);
|
||||
check_error(cudaPeekAtLastError());
|
||||
|
||||
size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
|
||||
|
@ -141,6 +141,47 @@ void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int i, j;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
net.layers[i].batch_normalize=1;
|
||||
net.layers[i].scales = calloc(l.n, sizeof(float));
|
||||
for(j = 0; j < l.n; ++j){
|
||||
net.layers[i].scales[i] = 1;
|
||||
}
|
||||
net.layers[i].rolling_mean = calloc(l.n, sizeof(float));
|
||||
net.layers[i].rolling_variance = calloc(l.n, sizeof(float));
|
||||
}
|
||||
}
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
denormalize_convolutional_layer(l);
|
||||
net.layers[i].batch_normalize=0;
|
||||
}
|
||||
}
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void visualize(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
@ -202,6 +243,10 @@ int main(int argc, char **argv)
|
||||
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
|
||||
} else if (0 == strcmp(argv[1], "rgbgr")){
|
||||
rgbgr_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "denormalize")){
|
||||
denormalize_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "normalize")){
|
||||
normalize_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "rescale")){
|
||||
rescale_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "partial")){
|
||||
|
@ -153,7 +153,9 @@ void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int
|
||||
{
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPG", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||
int count = 0;
|
||||
box_label *boxes = read_boxes(labelpath, &count);
|
||||
@ -547,7 +549,7 @@ void *load_thread(void *ptr)
|
||||
check_error(status);
|
||||
#endif
|
||||
|
||||
printf("Loading data: %d\n", rand_r(&data_seed));
|
||||
//printf("Loading data: %d\n", rand_r(&data_seed));
|
||||
load_args a = *(struct load_args*)ptr;
|
||||
if (a.type == CLASSIFICATION_DATA){
|
||||
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
|
||||
|
@ -20,7 +20,7 @@ extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, n
|
||||
int n = layer.h*layer.w;
|
||||
int k = layer.c;
|
||||
|
||||
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
|
||||
fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float *a = layer.filters_gpu;
|
||||
@ -31,6 +31,7 @@ extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, n
|
||||
|
||||
col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
|
||||
}
|
||||
add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
|
||||
activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
|
||||
}
|
||||
|
||||
|
@ -215,7 +215,7 @@ void show_image_cv(image p, char *name)
|
||||
|
||||
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
|
||||
int step = disp->widthStep;
|
||||
cvNamedWindow(buff, CV_WINDOW_AUTOSIZE);
|
||||
cvNamedWindow(buff, CV_WINDOW_NORMAL);
|
||||
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
|
||||
++windows;
|
||||
for(y = 0; y < p.h; ++y){
|
||||
@ -696,7 +696,7 @@ image load_image_cv(char *filename, int channels)
|
||||
|
||||
if( (src = cvLoadImage(filename, flag)) == 0 )
|
||||
{
|
||||
printf("Cannot load file image %s\n", filename);
|
||||
printf("Cannot load image \"%s\"\n", filename);
|
||||
exit(0);
|
||||
}
|
||||
image out = ipl_to_image(src);
|
||||
@ -713,7 +713,7 @@ image load_image_stb(char *filename, int channels)
|
||||
int w, h, c;
|
||||
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
|
||||
if (!data) {
|
||||
fprintf(stderr, "Cannot load file image %s\nSTB Reason: %s\n", filename, stbi_failure_reason());
|
||||
fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
|
||||
exit(0);
|
||||
}
|
||||
if(channels) c = channels;
|
||||
|
@ -92,6 +92,7 @@ void validate_imagenet(char *filename, char *weightfile)
|
||||
srand(time(0));
|
||||
|
||||
char **labels = get_labels("data/inet.labels.list");
|
||||
//list *plist = get_paths("data/inet.suppress.list");
|
||||
list *plist = get_paths("data/inet.val.list");
|
||||
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
32
src/layer.h
32
src/layer.h
@ -27,6 +27,7 @@ typedef struct {
|
||||
LAYER_TYPE type;
|
||||
ACTIVATION activation;
|
||||
COST_TYPE cost_type;
|
||||
int batch_normalize;
|
||||
int batch;
|
||||
int forced;
|
||||
int object_logistic;
|
||||
@ -51,6 +52,7 @@ typedef struct {
|
||||
float jitter;
|
||||
float saturation;
|
||||
float exposure;
|
||||
float shift;
|
||||
int softmax;
|
||||
int classes;
|
||||
int coords;
|
||||
@ -71,6 +73,7 @@ typedef struct {
|
||||
float class_scale;
|
||||
|
||||
int dontload;
|
||||
int dontloadscales;
|
||||
|
||||
float probability;
|
||||
float scale;
|
||||
@ -84,6 +87,9 @@ typedef struct {
|
||||
float *biases;
|
||||
float *bias_updates;
|
||||
|
||||
float *scales;
|
||||
float *scale_updates;
|
||||
|
||||
float *weights;
|
||||
float *weight_updates;
|
||||
|
||||
@ -95,18 +101,44 @@ typedef struct {
|
||||
float * squared;
|
||||
float * norms;
|
||||
|
||||
float * spatial_mean;
|
||||
float * mean;
|
||||
float * variance;
|
||||
|
||||
float * rolling_mean;
|
||||
float * rolling_variance;
|
||||
|
||||
#ifdef GPU
|
||||
int *indexes_gpu;
|
||||
float * filters_gpu;
|
||||
float * filter_updates_gpu;
|
||||
|
||||
float * spatial_mean_gpu;
|
||||
float * spatial_variance_gpu;
|
||||
|
||||
float * mean_gpu;
|
||||
float * variance_gpu;
|
||||
|
||||
float * rolling_mean_gpu;
|
||||
float * rolling_variance_gpu;
|
||||
|
||||
float * spatial_mean_delta_gpu;
|
||||
float * spatial_variance_delta_gpu;
|
||||
|
||||
float * variance_delta_gpu;
|
||||
float * mean_delta_gpu;
|
||||
|
||||
float * col_image_gpu;
|
||||
|
||||
float * x_gpu;
|
||||
float * x_norm_gpu;
|
||||
float * weights_gpu;
|
||||
float * biases_gpu;
|
||||
float * scales_gpu;
|
||||
|
||||
float * weight_updates_gpu;
|
||||
float * bias_updates_gpu;
|
||||
float * scale_updates_gpu;
|
||||
|
||||
float * output_gpu;
|
||||
float * delta_gpu;
|
||||
|
@ -15,6 +15,7 @@ typedef struct {
|
||||
int n;
|
||||
int batch;
|
||||
int *seen;
|
||||
float epoch;
|
||||
int subdivisions;
|
||||
float momentum;
|
||||
float decay;
|
||||
|
@ -36,7 +36,7 @@ void forward_network_gpu(network net, network_state state)
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.delta_gpu){
|
||||
scal_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
|
||||
fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
|
||||
}
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
forward_convolutional_layer_gpu(l, state);
|
||||
|
28
src/parser.c
28
src/parser.c
@ -124,8 +124,9 @@ convolutional_layer parse_convolutional(list *options, size_params params)
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
@ -227,6 +228,7 @@ crop_layer parse_crop(list *options, size_params params)
|
||||
int noadjust = option_find_int_quiet(options, "noadjust",0);
|
||||
|
||||
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
|
||||
l.shift = option_find_float(options, "shift", 0);
|
||||
l.noadjust = noadjust;
|
||||
return l;
|
||||
}
|
||||
@ -452,6 +454,7 @@ network parse_network_cfg(char *filename)
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
l.dontload = option_find_int_quiet(options, "dontload", 0);
|
||||
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
|
||||
option_unused(options);
|
||||
net.layers[count] = l;
|
||||
free_section(s);
|
||||
@ -633,19 +636,13 @@ void save_weights_upto(network net, char *filename, int cutoff)
|
||||
#endif
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fwrite(l.biases, sizeof(float), l.n, fp);
|
||||
if (l.batch_normalize){
|
||||
fwrite(l.scales, sizeof(float), l.n, fp);
|
||||
fwrite(l.rolling_mean, sizeof(float), l.n, fp);
|
||||
fwrite(l.rolling_variance, sizeof(float), l.n, fp);
|
||||
}
|
||||
fwrite(l.filters, sizeof(float), num, fp);
|
||||
}
|
||||
if(l.type == DECONVOLUTIONAL){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_deconvolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fwrite(l.biases, sizeof(float), l.n, fp);
|
||||
fwrite(l.filters, sizeof(float), num, fp);
|
||||
}
|
||||
if(l.type == CONNECTED){
|
||||
} if(l.type == CONNECTED){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_connected_layer(l);
|
||||
@ -682,6 +679,11 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fread(l.biases, sizeof(float), l.n, fp);
|
||||
if (l.batch_normalize && (!l.dontloadscales)){
|
||||
fread(l.scales, sizeof(float), l.n, fp);
|
||||
fread(l.rolling_mean, sizeof(float), l.n, fp);
|
||||
fread(l.rolling_variance, sizeof(float), l.n, fp);
|
||||
}
|
||||
fread(l.filters, sizeof(float), num, fp);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
|
@ -226,6 +226,11 @@ void backward_region_layer(const region_layer l, network_state state)
|
||||
|
||||
void forward_region_layer_gpu(const region_layer l, network_state state)
|
||||
{
|
||||
if(!state.train){
|
||||
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
|
||||
return;
|
||||
}
|
||||
|
||||
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
||||
float *truth_cpu = 0;
|
||||
if(state.truth){
|
||||
|
106
src/swag.c
106
src/swag.c
@ -12,47 +12,41 @@
|
||||
|
||||
char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
||||
|
||||
void draw_swag(image im, float *predictions, int side, int num, char *label, float thresh)
|
||||
void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label)
|
||||
{
|
||||
int classes = 20;
|
||||
int i,n;
|
||||
int i;
|
||||
|
||||
for(i = 0; i < side*side; ++i){
|
||||
int row = i / side;
|
||||
int col = i % side;
|
||||
for(n = 0; n < num; ++n){
|
||||
int p_index = side*side*classes + i*num + n;
|
||||
int box_index = side*side*(classes + num) + (i*num + n)*4;
|
||||
int class_index = i*classes;
|
||||
float scale = predictions[p_index];
|
||||
int class = max_index(predictions+class_index, classes);
|
||||
float prob = scale * predictions[class_index + class];
|
||||
for(i = 0; i < num; ++i){
|
||||
int class = max_index(probs[i], classes);
|
||||
float prob = probs[i][class];
|
||||
if(prob > thresh){
|
||||
int width = sqrt(prob)*5 + 1;
|
||||
int width = pow(prob, 1./3.)*10 + 1;
|
||||
printf("%f %s\n", prob, voc_names[class]);
|
||||
float red = get_color(0,class,classes);
|
||||
float green = get_color(1,class,classes);
|
||||
float blue = get_color(2,class,classes);
|
||||
box b = float_to_box(predictions+box_index);
|
||||
b.x = (b.x + col)/side;
|
||||
b.y = (b.y + row)/side;
|
||||
b.w = b.w*b.w;
|
||||
b.h = b.h*b.h;
|
||||
//red = green = blue = 0;
|
||||
box b = boxes[i];
|
||||
|
||||
int left = (b.x-b.w/2)*im.w;
|
||||
int right = (b.x+b.w/2)*im.w;
|
||||
int top = (b.y-b.h/2)*im.h;
|
||||
int bot = (b.y+b.h/2)*im.h;
|
||||
int left = (b.x-b.w/2.)*im.w;
|
||||
int right = (b.x+b.w/2.)*im.w;
|
||||
int top = (b.y-b.h/2.)*im.h;
|
||||
int bot = (b.y+b.h/2.)*im.h;
|
||||
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
||||
}
|
||||
}
|
||||
}
|
||||
show_image(im, label);
|
||||
}
|
||||
|
||||
void train_swag(char *cfgfile, char *weightfile)
|
||||
{
|
||||
//char *train_images = "/home/pjreddie/data/voc/person_detection/2010_person.txt";
|
||||
//char *train_images = "/home/pjreddie/data/people-art/train.txt";
|
||||
//char *train_images = "/home/pjreddie/data/voc/test/2012_trainval.txt";
|
||||
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
|
||||
//char *train_images = "/home/pjreddie/data/voc/test/train_all.txt";
|
||||
//char *train_images = "/home/pjreddie/data/voc/test/2007_trainval.txt";
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
srand(time(0));
|
||||
data_seed = time(0);
|
||||
@ -116,7 +110,7 @@ void train_swag(char *cfgfile, char *weightfile)
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
if(i%1000==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
@ -189,6 +183,9 @@ void validate_swag(char *cfgfile, char *weightfile)
|
||||
srand(time(0));
|
||||
|
||||
char *base = "results/comp4_det_test_";
|
||||
//base = "/home/pjreddie/comp4_det_test_";
|
||||
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
|
||||
//list *plist = get_paths("/home/pjreddie/data/cubist/test.txt");
|
||||
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
@ -216,7 +213,7 @@ void validate_swag(char *cfgfile, char *weightfile)
|
||||
int nms = 1;
|
||||
float iou_thresh = .5;
|
||||
|
||||
int nthreads = 8;
|
||||
int nthreads = 2;
|
||||
image *val = calloc(nthreads, sizeof(image));
|
||||
image *val_resized = calloc(nthreads, sizeof(image));
|
||||
image *buf = calloc(nthreads, sizeof(image));
|
||||
@ -256,7 +253,7 @@ void validate_swag(char *cfgfile, char *weightfile)
|
||||
int w = val[t].w;
|
||||
int h = val[t].h;
|
||||
convert_swag_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms(boxes, probs, side*side*l.n, classes, iou_thresh);
|
||||
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
|
||||
print_swag_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
|
||||
free(id);
|
||||
free_image(val[t]);
|
||||
@ -315,8 +312,6 @@ void validate_swag_recall(char *cfgfile, char *weightfile)
|
||||
image sized = resize_image(orig, net.w, net.h);
|
||||
char *id = basecfg(path);
|
||||
float *predictions = network_predict(net, sized.data);
|
||||
int w = orig.w;
|
||||
int h = orig.h;
|
||||
convert_swag_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
|
||||
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
|
||||
|
||||
@ -362,12 +357,17 @@ void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
region_layer layer = net.layers[net.n-1];
|
||||
region_layer l = net.layers[net.n-1];
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
char buff[256];
|
||||
char *input = buff;
|
||||
int j;
|
||||
float nms=.5;
|
||||
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
|
||||
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
||||
while(1){
|
||||
if(filename){
|
||||
strncpy(input, filename, 256);
|
||||
@ -384,7 +384,10 @@ void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
|
||||
convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
|
||||
|
||||
show_image(sized, "resized");
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
@ -396,6 +399,48 @@ void test_swag(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
#ifdef OPENCV
|
||||
image ipl_to_image(IplImage* src);
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
|
||||
void demo_swag(char *cfgfile, char *weightfile, float thresh)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
region_layer layer = net.layers[net.n-1];
|
||||
CvCapture *capture = cvCaptureFromCAM(-1);
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
while(1){
|
||||
IplImage* frame = cvQueryFrame(capture);
|
||||
image im = ipl_to_image(frame);
|
||||
cvReleaseImage(&frame);
|
||||
rgbgr_image(im);
|
||||
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
float *X = sized.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
cvWaitKey(10);
|
||||
}
|
||||
}
|
||||
#else
|
||||
void demo_swag(char *cfgfile, char *weightfile, float thresh){}
|
||||
#endif
|
||||
*/
|
||||
|
||||
void demo_swag(char *cfgfile, char *weightfile, float thresh);
|
||||
#ifndef GPU
|
||||
void demo_swag(char *cfgfile, char *weightfile, float thresh){}
|
||||
#endif
|
||||
|
||||
void run_swag(int argc, char **argv)
|
||||
{
|
||||
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
||||
@ -411,4 +456,5 @@ void run_swag(int argc, char **argv)
|
||||
else if(0==strcmp(argv[2], "train")) train_swag(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_swag(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_swag_recall(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "demo")) demo_swag(cfg, weights, thresh);
|
||||
}
|
||||
|
61
src/swag_kernels.cu
Normal file
61
src/swag_kernels.cu
Normal file
@ -0,0 +1,61 @@
|
||||
extern "C" {
|
||||
#include "network.h"
|
||||
#include "region_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "box.h"
|
||||
#include "image.h"
|
||||
}
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
extern "C" image ipl_to_image(IplImage* src);
|
||||
extern "C" void convert_swag_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
|
||||
extern "C" void draw_swag(image im, int num, float thresh, box *boxes, float **probs, char *label);
|
||||
|
||||
extern "C" void demo_swag(char *cfgfile, char *weightfile, float thresh)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
region_layer l = net.layers[net.n-1];
|
||||
cv::VideoCapture cap(0);
|
||||
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
float nms = .4;
|
||||
int j;
|
||||
box *boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
|
||||
float **probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
|
||||
|
||||
while(1){
|
||||
cv::Mat frame_m;
|
||||
cap >> frame_m;
|
||||
IplImage frame = frame_m;
|
||||
image im = ipl_to_image(&frame);
|
||||
rgbgr_image(im);
|
||||
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
float *X = sized.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
convert_swag_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
printf("\033[2J");
|
||||
printf("\033[1;1H");
|
||||
printf("\nObjects:\n\n");
|
||||
draw_swag(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
|
||||
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
cvWaitKey(1);
|
||||
}
|
||||
}
|
||||
#else
|
||||
extern "C" void demo_swag(char *cfgfile, char *weightfile, float thresh){}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user