mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
fixed dropout ><
This commit is contained in:
parent
79fffcce3c
commit
90d354a2a5
44
src/cnn.c
44
src/cnn.c
@ -294,7 +294,7 @@ void train_asirra()
|
||||
while(1){
|
||||
i += 1;
|
||||
time=clock();
|
||||
data train = load_data_random(imgs*net.batch, paths, m, labels, 2, 256, 256);
|
||||
data train = load_data(paths, imgs*net.batch, m, labels, 2, 256, 256);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
@ -404,7 +404,7 @@ void train_imagenet_distributed(char *address)
|
||||
printf("%d\n", plist->size);
|
||||
clock_t time;
|
||||
data train, buffer;
|
||||
pthread_t load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
pthread_t load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
while(1){
|
||||
i += 1;
|
||||
|
||||
@ -416,7 +416,7 @@ void train_imagenet_distributed(char *address)
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
normalize_data_rows(train);
|
||||
load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
|
||||
@ -434,11 +434,10 @@ void train_imagenet()
|
||||
float avg_loss = 1;
|
||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg("cfg/net.cfg");
|
||||
network net = parse_network_cfg("cfg/net.part");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
//imgs=1;
|
||||
int i = 0;
|
||||
int i = 9540;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -447,14 +446,14 @@ void train_imagenet()
|
||||
pthread_t load_thread;
|
||||
data train;
|
||||
data buffer;
|
||||
load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
while(1){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
normalize_data_rows(train);
|
||||
load_thread = load_data_random_thread(imgs*net.batch, paths, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
load_thread = load_data_thread(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224, &buffer);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
#ifdef GPU
|
||||
@ -465,7 +464,7 @@ void train_imagenet()
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
}
|
||||
@ -473,7 +472,7 @@ void train_imagenet()
|
||||
|
||||
void validate_imagenet(char *filename)
|
||||
{
|
||||
int i;
|
||||
int i = 0;
|
||||
network net = parse_network_cfg(filename);
|
||||
srand(time(0));
|
||||
|
||||
@ -488,21 +487,28 @@ void validate_imagenet(char *filename)
|
||||
float avg_acc = 0;
|
||||
float avg_top5 = 0;
|
||||
int splits = 50;
|
||||
int num = (i+1)*m/splits - i*m/splits;
|
||||
|
||||
for(i = 0; i < splits; ++i){
|
||||
data val, buffer;
|
||||
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 224, 224, &buffer);
|
||||
for(i = 1; i <= splits; ++i){
|
||||
time=clock();
|
||||
char **part = paths+(i*m/splits);
|
||||
int num = (i+1)*m/splits - i*m/splits;
|
||||
data val = load_data(part, num, labels, 1000, 224, 224);
|
||||
|
||||
pthread_join(load_thread, 0);
|
||||
val = buffer;
|
||||
normalize_data_rows(val);
|
||||
|
||||
num = (i+1)*m/splits - i*m/splits;
|
||||
char **part = paths+(i*m/splits);
|
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 224, 224, &buffer);
|
||||
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
#ifdef GPU
|
||||
float *acc = network_accuracies_gpu(net, val);
|
||||
avg_acc += acc[0];
|
||||
avg_top5 += acc[1];
|
||||
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/(i+1), avg_top5/(i+1), sec(clock()-time), val.X.rows);
|
||||
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
|
||||
#endif
|
||||
free_data(val);
|
||||
}
|
||||
@ -895,14 +901,14 @@ void test_correct_alexnet()
|
||||
int count = 0;
|
||||
|
||||
srand(222222);
|
||||
network net = parse_network_cfg("cfg/alexnet.test");
|
||||
network net = parse_network_cfg("cfg/net.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
imgs = 1;
|
||||
|
||||
while(++count <= 5){
|
||||
time=clock();
|
||||
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
|
||||
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224,224);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
@ -914,10 +920,10 @@ void test_correct_alexnet()
|
||||
#ifdef GPU
|
||||
count = 0;
|
||||
srand(222222);
|
||||
net = parse_network_cfg("cfg/alexnet.test");
|
||||
net = parse_network_cfg("cfg/net.cfg");
|
||||
while(++count <= 5){
|
||||
time=clock();
|
||||
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
|
||||
data train = load_data(paths, imgs*net.batch, plist->size, labels, 1000, 224, 224);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
30
src/data.c
30
src/data.c
@ -180,16 +180,7 @@ data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_data(char **paths, int n, char **labels, int k, int h, int w)
|
||||
{
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, h, w);
|
||||
d.y = load_labels_paths(paths, n, labels, k);
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w)
|
||||
char **get_random_paths(char **paths, int n, int m)
|
||||
{
|
||||
char **random_paths = calloc(n, sizeof(char*));
|
||||
int i;
|
||||
@ -198,14 +189,23 @@ data load_data_random(int n, char **paths, int m, char **labels, int k, int h, i
|
||||
random_paths[i] = paths[index];
|
||||
if(i == 0) printf("%s\n", paths[index]);
|
||||
}
|
||||
data d = load_data(random_paths, n, labels, k, h, w);
|
||||
free(random_paths);
|
||||
return random_paths;
|
||||
}
|
||||
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
|
||||
{
|
||||
if(m) paths = get_random_paths(paths, n, m);
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, h, w);
|
||||
d.y = load_labels_paths(paths, n, labels, k);
|
||||
if(m) free(paths);
|
||||
return d;
|
||||
}
|
||||
|
||||
struct load_args{
|
||||
int n;
|
||||
char **paths;
|
||||
int n;
|
||||
int m;
|
||||
char **labels;
|
||||
int k;
|
||||
@ -217,11 +217,11 @@ struct load_args{
|
||||
void *load_in_thread(void *ptr)
|
||||
{
|
||||
struct load_args a = *(struct load_args*)ptr;
|
||||
*a.d = load_data_random(a.n, a.paths, a.m, a.labels, a.k, a.h, a.w);
|
||||
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pthread_t load_data_random_thread(int n, char **paths, int m, char **labels, int k, int h, int w, data *d)
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d)
|
||||
{
|
||||
pthread_t thread;
|
||||
struct load_args *args = calloc(1, sizeof(struct load_args));
|
||||
|
@ -13,9 +13,10 @@ typedef struct{
|
||||
|
||||
|
||||
void free_data(data d);
|
||||
data load_data(char **paths, int n, char **labels, int k, int h, int w);
|
||||
pthread_t load_data_random_thread(int n, char **paths, int m, char **labels, int k, int h, int w, data *d);
|
||||
data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w);
|
||||
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
|
||||
|
||||
data load_data_detection_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale);
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int h, int w, int nh, int nw, float scale);
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
|
||||
|
@ -10,8 +10,9 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
|
||||
layer->probability = probability;
|
||||
layer->inputs = inputs;
|
||||
layer->batch = batch;
|
||||
#ifdef GPU
|
||||
layer->rand = calloc(inputs*batch, sizeof(float));
|
||||
layer->scale = 1./(1.-probability);
|
||||
#ifdef GPU
|
||||
layer->rand_cl = cl_make_array(layer->rand, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
@ -21,13 +22,21 @@ void forward_dropout_layer(dropout_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch * layer.inputs; ++i){
|
||||
if(rand_uniform() < layer.probability) input[i] = 0;
|
||||
else input[i] /= (1-layer.probability);
|
||||
float r = rand_uniform();
|
||||
layer.rand[i] = r;
|
||||
if(r < layer.probability) input[i] = 0;
|
||||
else input[i] *= layer.scale;
|
||||
}
|
||||
}
|
||||
void backward_dropout_layer(dropout_layer layer, float *input, float *delta)
|
||||
|
||||
void backward_dropout_layer(dropout_layer layer, float *delta)
|
||||
{
|
||||
// Don't do shit LULZ
|
||||
int i;
|
||||
for(i = 0; i < layer.batch * layer.inputs; ++i){
|
||||
float r = layer.rand[i];
|
||||
if(r < layer.probability) delta[i] = 0;
|
||||
else delta[i] *= layer.scale;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
@ -36,7 +45,7 @@ cl_kernel get_dropout_kernel()
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/dropout_layer.cl", "forward", 0);
|
||||
kernel = get_kernel("src/dropout_layer.cl", "yoloswag420blazeit360noscope", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
@ -56,6 +65,27 @@ void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input)
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta)
|
||||
{
|
||||
int size = layer.inputs*layer.batch;
|
||||
|
||||
cl_kernel kernel = get_dropout_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
@ -1,5 +1,5 @@
|
||||
__kernel void forward(__global float *input, __global float *rand, float prob)
|
||||
__kernel void yoloswag420blazeit360noscope(__global float *input, __global float *rand, float prob, float scale)
|
||||
{
|
||||
int id = get_global_id(0);
|
||||
input[id] = (rand[id] < prob) ? 0 : input[id]/(1.-prob);
|
||||
input[id] = (rand[id] < prob) ? 0 : input[id]*scale;
|
||||
}
|
||||
|
@ -6,8 +6,9 @@ typedef struct{
|
||||
int batch;
|
||||
int inputs;
|
||||
float probability;
|
||||
#ifdef GPU
|
||||
float scale;
|
||||
float *rand;
|
||||
#ifdef GPU
|
||||
cl_mem rand_cl;
|
||||
#endif
|
||||
} dropout_layer;
|
||||
@ -15,9 +16,11 @@ typedef struct{
|
||||
dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
|
||||
|
||||
void forward_dropout_layer(dropout_layer layer, float *input);
|
||||
void backward_dropout_layer(dropout_layer layer, float *input, float *delta);
|
||||
#ifdef GPU
|
||||
void backward_dropout_layer(dropout_layer layer, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input);
|
||||
void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -219,6 +219,10 @@ void backward_network(network net, float *input)
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
if(i != 0) backward_maxpool_layer(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
backward_dropout_layer(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
|
||||
|
@ -101,6 +101,10 @@ void backward_network_gpu(network net, cl_mem input)
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
backward_maxpool_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
backward_dropout_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
backward_softmax_layer_gpu(layer, prev_delta);
|
||||
|
Loading…
Reference in New Issue
Block a user