updates
8
Makefile
@ -1,6 +1,6 @@
|
||||
GPU=0
|
||||
CUDNN=0
|
||||
OPENCV=0
|
||||
GPU=1
|
||||
CUDNN=1
|
||||
OPENCV=1
|
||||
DEBUG=0
|
||||
|
||||
ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52
|
||||
@ -41,7 +41,7 @@ CFLAGS+= -DCUDNN
|
||||
LDFLAGS+= -lcudnn
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS+= -lstdc++
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||
|
Before Width: | Height: | Size: 713 B After Width: | Height: | Size: 713 B |
Before Width: | Height: | Size: 629 B After Width: | Height: | Size: 629 B |
Before Width: | Height: | Size: 537 B After Width: | Height: | Size: 537 B |
Before Width: | Height: | Size: 610 B After Width: | Height: | Size: 610 B |
Before Width: | Height: | Size: 494 B After Width: | Height: | Size: 494 B |
Before Width: | Height: | Size: 657 B After Width: | Height: | Size: 657 B |
Before Width: | Height: | Size: 833 B After Width: | Height: | Size: 833 B |
Before Width: | Height: | Size: 520 B After Width: | Height: | Size: 520 B |
Before Width: | Height: | Size: 497 B After Width: | Height: | Size: 497 B |
Before Width: | Height: | Size: 583 B After Width: | Height: | Size: 583 B |
Before Width: | Height: | Size: 635 B After Width: | Height: | Size: 635 B |
Before Width: | Height: | Size: 480 B After Width: | Height: | Size: 480 B |
Before Width: | Height: | Size: 517 B After Width: | Height: | Size: 517 B |
Before Width: | Height: | Size: 500 B After Width: | Height: | Size: 500 B |
Before Width: | Height: | Size: 547 B After Width: | Height: | Size: 547 B |
Before Width: | Height: | Size: 541 B After Width: | Height: | Size: 541 B |
Before Width: | Height: | Size: 579 B After Width: | Height: | Size: 579 B |
Before Width: | Height: | Size: 466 B After Width: | Height: | Size: 466 B |
Before Width: | Height: | Size: 541 B After Width: | Height: | Size: 541 B |
Before Width: | Height: | Size: 436 B After Width: | Height: | Size: 436 B |
Before Width: | Height: | Size: 550 B After Width: | Height: | Size: 550 B |
Before Width: | Height: | Size: 438 B After Width: | Height: | Size: 438 B |
Before Width: | Height: | Size: 711 B After Width: | Height: | Size: 711 B |
Before Width: | Height: | Size: 518 B After Width: | Height: | Size: 518 B |
Before Width: | Height: | Size: 501 B After Width: | Height: | Size: 501 B |
Before Width: | Height: | Size: 535 B After Width: | Height: | Size: 535 B |
Before Width: | Height: | Size: 517 B After Width: | Height: | Size: 517 B |
Before Width: | Height: | Size: 474 B After Width: | Height: | Size: 474 B |
Before Width: | Height: | Size: 785 B After Width: | Height: | Size: 785 B |
Before Width: | Height: | Size: 779 B After Width: | Height: | Size: 779 B |
Before Width: | Height: | Size: 535 B After Width: | Height: | Size: 535 B |
Before Width: | Height: | Size: 559 B After Width: | Height: | Size: 559 B |
Before Width: | Height: | Size: 653 B After Width: | Height: | Size: 653 B |
Before Width: | Height: | Size: 812 B After Width: | Height: | Size: 812 B |
Before Width: | Height: | Size: 488 B After Width: | Height: | Size: 488 B |
Before Width: | Height: | Size: 602 B After Width: | Height: | Size: 602 B |
Before Width: | Height: | Size: 588 B After Width: | Height: | Size: 588 B |
Before Width: | Height: | Size: 666 B After Width: | Height: | Size: 666 B |
Before Width: | Height: | Size: 661 B After Width: | Height: | Size: 661 B |
Before Width: | Height: | Size: 575 B After Width: | Height: | Size: 575 B |
Before Width: | Height: | Size: 640 B After Width: | Height: | Size: 640 B |
Before Width: | Height: | Size: 806 B After Width: | Height: | Size: 806 B |
Before Width: | Height: | Size: 471 B After Width: | Height: | Size: 471 B |
Before Width: | Height: | Size: 526 B After Width: | Height: | Size: 526 B |
Before Width: | Height: | Size: 561 B After Width: | Height: | Size: 561 B |
Before Width: | Height: | Size: 841 B After Width: | Height: | Size: 841 B |
Before Width: | Height: | Size: 745 B After Width: | Height: | Size: 745 B |
Before Width: | Height: | Size: 762 B After Width: | Height: | Size: 762 B |
Before Width: | Height: | Size: 606 B After Width: | Height: | Size: 606 B |
Before Width: | Height: | Size: 634 B After Width: | Height: | Size: 634 B |
Before Width: | Height: | Size: 552 B After Width: | Height: | Size: 552 B |
Before Width: | Height: | Size: 853 B After Width: | Height: | Size: 853 B |
Before Width: | Height: | Size: 633 B After Width: | Height: | Size: 633 B |
Before Width: | Height: | Size: 515 B After Width: | Height: | Size: 515 B |
Before Width: | Height: | Size: 789 B After Width: | Height: | Size: 789 B |
Before Width: | Height: | Size: 785 B After Width: | Height: | Size: 785 B |
Before Width: | Height: | Size: 761 B After Width: | Height: | Size: 761 B |
Before Width: | Height: | Size: 593 B After Width: | Height: | Size: 593 B |
Before Width: | Height: | Size: 777 B After Width: | Height: | Size: 777 B |
Before Width: | Height: | Size: 583 B After Width: | Height: | Size: 583 B |
Before Width: | Height: | Size: 571 B After Width: | Height: | Size: 571 B |
Before Width: | Height: | Size: 475 B After Width: | Height: | Size: 475 B |
Before Width: | Height: | Size: 836 B After Width: | Height: | Size: 836 B |
Before Width: | Height: | Size: 459 B After Width: | Height: | Size: 459 B |
Before Width: | Height: | Size: 819 B After Width: | Height: | Size: 819 B |
Before Width: | Height: | Size: 527 B After Width: | Height: | Size: 527 B |
Before Width: | Height: | Size: 560 B After Width: | Height: | Size: 560 B |
Before Width: | Height: | Size: 698 B After Width: | Height: | Size: 698 B |
Before Width: | Height: | Size: 744 B After Width: | Height: | Size: 744 B |
Before Width: | Height: | Size: 669 B After Width: | Height: | Size: 669 B |
Before Width: | Height: | Size: 752 B After Width: | Height: | Size: 752 B |
Before Width: | Height: | Size: 765 B After Width: | Height: | Size: 765 B |
Before Width: | Height: | Size: 806 B After Width: | Height: | Size: 806 B |
Before Width: | Height: | Size: 411 B After Width: | Height: | Size: 411 B |
Before Width: | Height: | Size: 628 B After Width: | Height: | Size: 628 B |
Before Width: | Height: | Size: 509 B After Width: | Height: | Size: 509 B |
Before Width: | Height: | Size: 700 B After Width: | Height: | Size: 700 B |
Before Width: | Height: | Size: 709 B After Width: | Height: | Size: 709 B |
Before Width: | Height: | Size: 474 B After Width: | Height: | Size: 474 B |
Before Width: | Height: | Size: 509 B After Width: | Height: | Size: 509 B |
Before Width: | Height: | Size: 374 B After Width: | Height: | Size: 374 B |
Before Width: | Height: | Size: 654 B After Width: | Height: | Size: 654 B |
Before Width: | Height: | Size: 654 B After Width: | Height: | Size: 654 B |
Before Width: | Height: | Size: 552 B After Width: | Height: | Size: 552 B |
Before Width: | Height: | Size: 771 B After Width: | Height: | Size: 771 B |
Before Width: | Height: | Size: 584 B After Width: | Height: | Size: 584 B |
@ -348,9 +348,8 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
convert_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80);
|
||||
save_image(im, "prediction");
|
||||
show_image(im, "predictions");
|
||||
|
||||
show_image(sized, "resized");
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
#ifdef OPENCV
|
||||
|
@ -192,6 +192,9 @@ void denormalize_connected_layer(layer l)
|
||||
l.weights[i*l.inputs + j] *= scale;
|
||||
}
|
||||
l.biases[i] -= l.rolling_mean[i] * scale;
|
||||
l.scales[i] = 1;
|
||||
l.rolling_mean[i] = 0;
|
||||
l.rolling_variance[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
@ -257,7 +260,6 @@ void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
|
||||
}
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
|
@ -301,6 +301,9 @@ void denormalize_convolutional_layer(convolutional_layer l)
|
||||
l.filters[i*l.c*l.size*l.size + j] *= scale;
|
||||
}
|
||||
l.biases[i] -= l.rolling_mean[i] * scale;
|
||||
l.scales[i] = 1;
|
||||
l.rolling_mean[i] = 0;
|
||||
l.rolling_variance[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
@ -434,7 +437,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
}
|
||||
*/
|
||||
|
||||
if(l.xnor ){
|
||||
if(l.xnor){
|
||||
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
|
||||
swap_binary(&l);
|
||||
binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
|
||||
|
@ -14,6 +14,7 @@
|
||||
|
||||
extern void run_imagenet(int argc, char **argv);
|
||||
extern void run_yolo(int argc, char **argv);
|
||||
extern void run_detector(int argc, char **argv);
|
||||
extern void run_coco(int argc, char **argv);
|
||||
extern void run_writing(int argc, char **argv);
|
||||
extern void run_captcha(int argc, char **argv);
|
||||
@ -97,12 +98,13 @@ void operations(char *cfgfile)
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
ops += 2 * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
|
||||
ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
|
||||
} else if(l.type == CONNECTED){
|
||||
ops += 2 * l.inputs * l.outputs;
|
||||
ops += 2l * l.inputs * l.outputs;
|
||||
}
|
||||
}
|
||||
printf("Floating Point Operations: %ld\n", ops);
|
||||
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
|
||||
}
|
||||
|
||||
void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
||||
@ -164,6 +166,47 @@ void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if (weightfile) {
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int i;
|
||||
for (i = 0; i < net.n; ++i) {
|
||||
layer l = net.layers[i];
|
||||
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
|
||||
denormalize_convolutional_layer(l);
|
||||
}
|
||||
if (l.type == CONNECTED && l.batch_normalize) {
|
||||
denormalize_connected_layer(l);
|
||||
}
|
||||
if (l.type == GRU && l.batch_normalize) {
|
||||
denormalize_connected_layer(*l.input_z_layer);
|
||||
denormalize_connected_layer(*l.input_r_layer);
|
||||
denormalize_connected_layer(*l.input_h_layer);
|
||||
denormalize_connected_layer(*l.state_z_layer);
|
||||
denormalize_connected_layer(*l.state_r_layer);
|
||||
denormalize_connected_layer(*l.state_h_layer);
|
||||
}
|
||||
}
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
layer normalize_layer(layer l, int n)
|
||||
{
|
||||
int j;
|
||||
l.batch_normalize=1;
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
for(j = 0; j < n; ++j){
|
||||
l.scales[j] = 1;
|
||||
}
|
||||
l.rolling_mean = calloc(n, sizeof(float));
|
||||
l.rolling_variance = calloc(n, sizeof(float));
|
||||
return l;
|
||||
}
|
||||
|
||||
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
@ -171,17 +214,23 @@ void normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int i, j;
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
if(l.type == CONVOLUTIONAL && !l.batch_normalize){
|
||||
net.layers[i] = normalize_layer(l, l.n);
|
||||
}
|
||||
if (l.type == CONNECTED && !l.batch_normalize) {
|
||||
net.layers[i] = normalize_layer(l, l.outputs);
|
||||
}
|
||||
if (l.type == GRU && l.batch_normalize) {
|
||||
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
|
||||
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
|
||||
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
|
||||
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
|
||||
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
|
||||
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
|
||||
net.layers[i].batch_normalize=1;
|
||||
net.layers[i].scales = calloc(l.n, sizeof(float));
|
||||
for(j = 0; j < l.n; ++j){
|
||||
net.layers[i].scales[i] = 1;
|
||||
}
|
||||
net.layers[i].rolling_mean = calloc(l.n, sizeof(float));
|
||||
net.layers[i].rolling_variance = calloc(l.n, sizeof(float));
|
||||
}
|
||||
}
|
||||
save_weights(net, outfile);
|
||||
@ -265,6 +314,8 @@ int main(int argc, char **argv)
|
||||
average(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "yolo")){
|
||||
run_yolo(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "detector")){
|
||||
run_detector(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "cifar")){
|
||||
run_cifar(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "go")){
|
||||
@ -299,6 +350,8 @@ int main(int argc, char **argv)
|
||||
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
|
||||
} else if (0 == strcmp(argv[1], "rgbgr")){
|
||||
rgbgr_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "reset")){
|
||||
reset_normalize_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "denormalize")){
|
||||
denormalize_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "normalize")){
|
||||
|
10
src/data.c
@ -297,11 +297,11 @@ void fill_truth_detection(char *path, int num_boxes, float *truth, int classes,
|
||||
|
||||
if (w < .01 || h < .01) continue;
|
||||
|
||||
truth[i*5+0] = id;
|
||||
truth[i*5+1] = x;
|
||||
truth[i*5+2] = y;
|
||||
truth[i*5+3] = w;
|
||||
truth[i*5+4] = h;
|
||||
truth[i*5+0] = x;
|
||||
truth[i*5+1] = y;
|
||||
truth[i*5+2] = w;
|
||||
truth[i*5+3] = h;
|
||||
truth[i*5+4] = id;
|
||||
}
|
||||
free(boxes);
|
||||
}
|
||||
|
@ -8,7 +8,7 @@
|
||||
#include "demo.h"
|
||||
#include <sys/time.h>
|
||||
|
||||
#define FRAMES 3
|
||||
#define FRAMES 1
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
|
@ -1,5 +1,5 @@
|
||||
#ifndef REGION_LAYER_H
|
||||
#define REGION_LAYER_H
|
||||
#ifndef DETECTION_LAYER_H
|
||||
#define DETECTION_LAYER_H
|
||||
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
@ -109,14 +109,17 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs,
|
||||
int class = max_index(probs[i], classes);
|
||||
float prob = probs[i][class];
|
||||
if(prob > thresh){
|
||||
int width = pow(prob, 1./2.)*10+1;
|
||||
width = 8;
|
||||
//int width = pow(prob, 1./2.)*30+1;
|
||||
int width = 8;
|
||||
printf("%s: %.0f%%\n", names[class], prob*100);
|
||||
int offset = class*1 % classes;
|
||||
float red = get_color(2,offset,classes);
|
||||
float green = get_color(1,offset,classes);
|
||||
float blue = get_color(0,offset,classes);
|
||||
float rgb[3];
|
||||
|
||||
//width = prob*20+2;
|
||||
|
||||
rgb[0] = red;
|
||||
rgb[1] = green;
|
||||
rgb[2] = blue;
|
||||
|
@ -29,6 +29,7 @@ typedef enum {
|
||||
BATCHNORM,
|
||||
NETWORK,
|
||||
XNOR,
|
||||
REGION,
|
||||
BLANK
|
||||
} LAYER_TYPE;
|
||||
|
||||
|
@ -16,6 +16,7 @@
|
||||
#include "activation_layer.h"
|
||||
#include "deconvolutional_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "region_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "batchnorm_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
@ -103,6 +104,8 @@ char *get_layer_string(LAYER_TYPE a)
|
||||
return "softmax";
|
||||
case DETECTION:
|
||||
return "detection";
|
||||
case REGION:
|
||||
return "region";
|
||||
case DROPOUT:
|
||||
return "dropout";
|
||||
case CROP:
|
||||
@ -160,6 +163,8 @@ void forward_network(network net, network_state state)
|
||||
forward_batchnorm_layer(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
forward_detection_layer(l, state);
|
||||
} else if(l.type == REGION){
|
||||
forward_region_layer(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
forward_connected_layer(l, state);
|
||||
} else if(l.type == RNN){
|
||||
@ -230,11 +235,7 @@ float get_network_cost(network net)
|
||||
float sum = 0;
|
||||
int count = 0;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.layers[i].type == COST){
|
||||
sum += net.layers[i].cost[0];
|
||||
++count;
|
||||
}
|
||||
if(net.layers[i].type == DETECTION){
|
||||
if(net.layers[i].cost){
|
||||
sum += net.layers[i].cost[0];
|
||||
++count;
|
||||
}
|
||||
@ -284,6 +285,8 @@ void backward_network(network net, network_state state)
|
||||
backward_dropout_layer(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
backward_detection_layer(l, state);
|
||||
} else if(l.type == REGION){
|
||||
backward_region_layer(l, state);
|
||||
} else if(l.type == SOFTMAX){
|
||||
if(i != 0) backward_softmax_layer(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
|
@ -19,6 +19,7 @@ extern "C" {
|
||||
#include "gru_layer.h"
|
||||
#include "crnn_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "region_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
#include "activation_layer.h"
|
||||
#include "deconvolutional_layer.h"
|
||||
@ -59,6 +60,8 @@ void forward_network_gpu(network net, network_state state)
|
||||
forward_local_layer_gpu(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
forward_detection_layer_gpu(l, state);
|
||||
} else if(l.type == REGION){
|
||||
forward_region_layer_gpu(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
forward_connected_layer_gpu(l, state);
|
||||
} else if(l.type == RNN){
|
||||
@ -125,6 +128,8 @@ void backward_network_gpu(network net, network_state state)
|
||||
backward_dropout_layer_gpu(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
backward_detection_layer_gpu(l, state);
|
||||
} else if(l.type == REGION){
|
||||
backward_region_layer_gpu(l, state);
|
||||
} else if(l.type == NORMALIZATION){
|
||||
backward_normalization_layer_gpu(l, state);
|
||||
} else if(l.type == BATCHNORM){
|
||||
@ -181,7 +186,7 @@ float train_network_datum_gpu(network net, float *x, float *y)
|
||||
state.net = net;
|
||||
int x_size = get_network_input_size(net)*net.batch;
|
||||
int y_size = get_network_output_size(net)*net.batch;
|
||||
if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
|
||||
if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch;
|
||||
if(!*net.input_gpu){
|
||||
*net.input_gpu = cuda_make_array(x, x_size);
|
||||
*net.truth_gpu = cuda_make_array(y, y_size);
|
||||
|
28
src/parser.c
@ -19,6 +19,7 @@
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "region_layer.h"
|
||||
#include "avgpool_layer.h"
|
||||
#include "local_layer.h"
|
||||
#include "route_layer.h"
|
||||
@ -51,6 +52,7 @@ int is_crop(section *s);
|
||||
int is_shortcut(section *s);
|
||||
int is_cost(section *s);
|
||||
int is_detection(section *s);
|
||||
int is_region(section *s);
|
||||
int is_route(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
@ -245,6 +247,25 @@ softmax_layer parse_softmax(list *options, size_params params)
|
||||
return layer;
|
||||
}
|
||||
|
||||
layer parse_region(list *options, size_params params)
|
||||
{
|
||||
int coords = option_find_int(options, "coords", 4);
|
||||
int classes = option_find_int(options, "classes", 20);
|
||||
int num = option_find_int(options, "num", 1);
|
||||
layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
|
||||
assert(l.outputs == params.inputs);
|
||||
|
||||
l.softmax = option_find_int(options, "softmax", 0);
|
||||
l.max_boxes = option_find_int_quiet(options, "max",30);
|
||||
l.jitter = option_find_float(options, "jitter", .2);
|
||||
l.rescore = option_find_int_quiet(options, "rescore",0);
|
||||
|
||||
l.coord_scale = option_find_float(options, "coord_scale", 1);
|
||||
l.object_scale = option_find_float(options, "object_scale", 1);
|
||||
l.noobject_scale = option_find_float(options, "noobject_scale", 1);
|
||||
l.class_scale = option_find_float(options, "class_scale", 1);
|
||||
return l;
|
||||
}
|
||||
detection_layer parse_detection(list *options, size_params params)
|
||||
{
|
||||
int coords = option_find_int(options, "coords", 1);
|
||||
@ -557,6 +578,8 @@ network parse_network_cfg(char *filename)
|
||||
l = parse_crop(options, params);
|
||||
}else if(is_cost(s)){
|
||||
l = parse_cost(options, params);
|
||||
}else if(is_region(s)){
|
||||
l = parse_region(options, params);
|
||||
}else if(is_detection(s)){
|
||||
l = parse_detection(options, params);
|
||||
}else if(is_softmax(s)){
|
||||
@ -620,6 +643,7 @@ LAYER_TYPE string_to_layer_type(char * type)
|
||||
if (strcmp(type, "[crop]")==0) return CROP;
|
||||
if (strcmp(type, "[cost]")==0) return COST;
|
||||
if (strcmp(type, "[detection]")==0) return DETECTION;
|
||||
if (strcmp(type, "[region]")==0) return REGION;
|
||||
if (strcmp(type, "[local]")==0) return LOCAL;
|
||||
if (strcmp(type, "[deconv]")==0
|
||||
|| strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL;
|
||||
@ -659,6 +683,10 @@ int is_cost(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[cost]")==0);
|
||||
}
|
||||
int is_region(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[region]")==0);
|
||||
}
|
||||
int is_detection(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[detection]")==0);
|
||||
|