diff --git a/src/network.c b/src/network.c index d532b859..438829ac 100644 --- a/src/network.c +++ b/src/network.c @@ -757,7 +757,7 @@ void fuse_conv_batchnorm(network net) layer *l = &net.layers[j]; if (l->type == CONVOLUTIONAL) { - printf(" Fuse Convolutional layer \t\t l->size = %d \n", l->size); + //printf(" Merges Convolutional-%d and batch_norm \n", j); if (l->batch_normalize) { int f; @@ -783,7 +783,7 @@ void fuse_conv_batchnorm(network net) } } else { - printf(" Skip layer: %d \n", l->type); + //printf(" Fusion skip layer type: %d \n", l->type); } } } diff --git a/src/network_kernels.cu b/src/network_kernels.cu index d6bb294b..2e2335d7 100644 --- a/src/network_kernels.cu +++ b/src/network_kernels.cu @@ -39,6 +39,7 @@ extern "C" { float * get_network_output_gpu_layer(network net, int i); float * get_network_delta_gpu_layer(network net, int i); float * get_network_output_gpu(network net); +#include "opencv2/highgui/highgui_c.h" void forward_network_gpu(network net, network_state state) { @@ -54,6 +55,21 @@ void forward_network_gpu(network net, network_state state) if(net.wait_stream) cudaStreamSynchronize(get_cuda_stream()); state.input = l.output_gpu; +/* + cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); + if (l.out_w >= 0 && l.out_h >= 1 && l.c >= 3) { + int j; + for (j = 0; j < l.out_c; ++j) { + image img = make_image(l.out_w, l.out_h, 3); + memcpy(img.data, l.output+ l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float)); + char buff[256]; + sprintf(buff, "layer-%d slice-%d", i, j); + show_image(img, buff); + } + cvWaitKey(0); // wait press-key in console + cvDestroyAllWindows(); + } +*/ } } diff --git a/src/parser.c b/src/parser.c index 4de8aeba..651671bb 100644 --- a/src/parser.c +++ b/src/parser.c @@ -274,6 +274,7 @@ layer parse_yolo(list *options, size_params params) //l.max_boxes = option_find_int_quiet(options, "max", 90); l.jitter = option_find_float(options, "jitter", .2); + l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); l.truth_thresh = option_find_float(options, "truth_thresh", 1); diff --git a/src/yolo_layer.c b/src/yolo_layer.c index a735932c..ad624261 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -109,18 +109,40 @@ float delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i } -void delta_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat) +void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss) { int n; if (delta[index]){ - delta[index + stride*class] = 1 - output[index + stride*class]; - if(avg_cat) *avg_cat += output[index + stride*class]; + delta[index + stride*class_id] = 1 - output[index + stride*class_id]; + if(avg_cat) *avg_cat += output[index + stride*class_id]; return; } - for(n = 0; n < classes; ++n){ - delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n]; - if(n == class && avg_cat) *avg_cat += output[index + stride*n]; - } + // Focal loss + if (focal_loss) { + // Focal Loss + float alpha = 0.5; // 0.25 or 0.5 + //float gamma = 2; // hardcoded in many places of the grad-formula + + int ti = index + stride*class_id; + float pt = output[ti] + 0.000000000000001F; + //float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 + float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss + + for (n = 0; n < classes; ++n) { + delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); + + delta[index + stride*n] *= alpha*grad; + + if (n == class_id) *avg_cat += output[index + stride*n]; + } + } + else { + // default + for (n = 0; n < classes; ++n) { + delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n]; + if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; + } + } } static int entry_index(layer l, int batch, int location, int entry) @@ -196,7 +218,7 @@ void forward_yolo_layer(const layer l, network_state state) int class = state.truth[best_t*(4 + 1) + b*l.truths + 4]; if (l.map) class = l.map[class]; int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); - delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0); + delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0, l.focal_loss); box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); } @@ -236,7 +258,7 @@ void forward_yolo_layer(const layer l, network_state state) int class = state.truth[t*(4 + 1) + b*l.truths + 4]; if (l.map) class = l.map[class]; int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); - delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat); + delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat, l.focal_loss); ++count; ++class_count; diff --git a/src/yolo_v2_class.cpp b/src/yolo_v2_class.cpp index be1b4ee9..6cc02524 100644 --- a/src/yolo_v2_class.cpp +++ b/src/yolo_v2_class.cpp @@ -69,6 +69,7 @@ YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_file } set_batch_network(&net, 1); net.gpu_index = cur_gpu_id; + fuse_conv_batchnorm(net); layer l = net.layers[net.n - 1]; int j;