Generalizing conv layer so deconv is easier

This commit is contained in:
Joseph Redmon
2015-02-09 13:27:58 -08:00
parent 7ee45082f1
commit 979d02126b
4 changed files with 38 additions and 82 deletions

View File

@ -8,7 +8,7 @@ extern "C" {
#include "cuda.h"
}
__global__ void bias(int n, int size, float *biases, float *output)
__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x;
int filter = blockIdx.y;
@ -17,18 +17,16 @@ __global__ void bias(int n, int size, float *biases, float *output)
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
}
extern "C" void bias_output_gpu(const convolutional_layer layer)
extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
{
int size = convolutional_out_height(layer)*convolutional_out_width(layer);
dim3 dimBlock(BLOCK, 1, 1);
dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch);
dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu);
bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
check_error(cudaPeekAtLastError());
}
__global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates, float scale)
__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale)
{
__shared__ float part[BLOCK];
int i,b;
@ -48,36 +46,14 @@ __global__ void learn_bias(int batch, int n, int size, float *delta, float *bias
}
}
extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
{
int size = convolutional_out_height(layer)*convolutional_out_width(layer);
float alpha = 1./layer.batch;
float alpha = 1./batch;
learn_bias<<<layer.n, BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu, alpha);
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, alpha);
check_error(cudaPeekAtLastError());
}
extern "C" void test_learn_bias(convolutional_layer l)
{
int i;
int size = convolutional_out_height(l) * convolutional_out_width(l);
for(i = 0; i < size*l.batch*l.n; ++i){
l.delta[i] = rand_uniform();
}
for(i = 0; i < l.n; ++i){
l.bias_updates[i] = rand_uniform();
}
cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n);
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
float *gpu = (float *) calloc(l.n, sizeof(float));
cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
learn_bias_convolutional_layer_ongpu(l);
learn_bias_convolutional_layer(l);
cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
}
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in)
{
int i;
@ -86,7 +62,7 @@ extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float
int n = convolutional_out_height(layer)*
convolutional_out_width(layer);
bias_output_gpu(layer);
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
for(i = 0; i < layer.batch; ++i){
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
@ -106,8 +82,9 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, floa
int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)*
convolutional_out_width(layer);
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
learn_bias_convolutional_layer_ongpu(layer);
backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1);