mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
some fixes
This commit is contained in:
parent
81c23650e1
commit
9802287b58
@ -92,6 +92,12 @@ void scal_cpu(int N, float ALPHA, float *X, int INCX)
|
||||
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
|
||||
}
|
||||
|
||||
void fill_cpu(int N, float ALPHA, float *X, int INCX)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
|
||||
}
|
||||
|
||||
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
|
@ -13,6 +13,7 @@ void mul_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
||||
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
||||
void fill_cpu(int N, float ALPHA, float * X, int INCX);
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void test_gpu_blas();
|
||||
void shortcut_cpu(float *out, int w, int h, int c, int batch, int sample, float *add, int stride, int c2);
|
||||
|
@ -143,7 +143,7 @@ void validate_classifier(char *datacfg, char *filename, char *weightfile)
|
||||
clock_t time;
|
||||
float avg_acc = 0;
|
||||
float avg_topk = 0;
|
||||
int splits = 50;
|
||||
int splits = m/1000;
|
||||
int num = (i+1)*m/splits - i*m/splits;
|
||||
|
||||
data val, buffer;
|
||||
@ -201,7 +201,7 @@ void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *fi
|
||||
int i = 0;
|
||||
char **names = get_labels(name_list);
|
||||
clock_t time;
|
||||
int indexes[10];
|
||||
int *indexes = calloc(top, sizeof(int));
|
||||
char buff[256];
|
||||
char *input = buff;
|
||||
while(1){
|
||||
@ -214,7 +214,7 @@ void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *fi
|
||||
if(!input) return;
|
||||
strtok(input, "\n");
|
||||
}
|
||||
image im = load_image_color(input, 256, 256);
|
||||
image im = load_image_color(input, net.w, net.h);
|
||||
float *X = im.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
@ -229,10 +229,10 @@ void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *fi
|
||||
}
|
||||
}
|
||||
|
||||
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer)
|
||||
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
|
||||
{
|
||||
int curr = 0;
|
||||
network net = parse_network_cfg(filename);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
@ -241,10 +241,8 @@ void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filen
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *test_list = option_find_str(options, "test", "data/test.list");
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(test_list);
|
||||
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -262,7 +260,7 @@ void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filen
|
||||
args.classes = classes;
|
||||
args.n = net.batch;
|
||||
args.m = 0;
|
||||
args.labels = labels;
|
||||
args.labels = 0;
|
||||
args.d = &buffer;
|
||||
args.type = CLASSIFICATION_DATA;
|
||||
|
||||
@ -283,13 +281,17 @@ void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filen
|
||||
time=clock();
|
||||
matrix pred = network_predict_data(net, val);
|
||||
|
||||
int i;
|
||||
int i, j;
|
||||
if (target_layer >= 0){
|
||||
//layer l = net.layers[target_layer];
|
||||
}
|
||||
|
||||
for(i = 0; i < val.X.rows; ++i){
|
||||
|
||||
for(i = 0; i < pred.rows; ++i){
|
||||
printf("%s", paths[curr-net.batch+i]);
|
||||
for(j = 0; j < pred.cols; ++j){
|
||||
printf("\t%g", pred.vals[i][j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
free_matrix(pred);
|
||||
@ -315,7 +317,7 @@ void run_classifier(int argc, char **argv)
|
||||
int layer = layer_s ? atoi(layer_s) : -1;
|
||||
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
|
||||
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer);
|
||||
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
|
||||
}
|
||||
|
||||
|
@ -194,13 +194,25 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
#endif
|
||||
}
|
||||
|
||||
void bias_output(float *output, float *biases, int batch, int n, int size)
|
||||
void add_bias(float *output, float *biases, int batch, int n, int size)
|
||||
{
|
||||
int i,j,b;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < n; ++i){
|
||||
for(j = 0; j < size; ++j){
|
||||
output[(b*n + i)*size + j] = biases[i];
|
||||
output[(b*n + i)*size + j] += biases[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void scale_bias(float *output, float *scales, int batch, int n, int size)
|
||||
{
|
||||
int i,j,b;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < n; ++i){
|
||||
for(j = 0; j < size; ++j){
|
||||
output[(b*n + i)*size + j] *= scales[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -222,7 +234,7 @@ void forward_convolutional_layer(const convolutional_layer l, network_state stat
|
||||
int out_w = convolutional_out_width(l);
|
||||
int i;
|
||||
|
||||
bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
@ -241,10 +253,16 @@ void forward_convolutional_layer(const convolutional_layer l, network_state stat
|
||||
}
|
||||
|
||||
if(l.batch_normalize){
|
||||
if(state.train){
|
||||
mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);
|
||||
variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);
|
||||
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);
|
||||
} else {
|
||||
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w);
|
||||
}
|
||||
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
|
||||
}
|
||||
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
}
|
||||
|
@ -31,7 +31,7 @@ image *visualize_convolutional_layer(convolutional_layer layer, char *window, im
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, network_state state);
|
||||
|
||||
void bias_output(float *output, float *biases, int batch, int n, int size);
|
||||
void add_bias(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
|
||||
|
||||
image get_convolutional_image(convolutional_layer layer);
|
||||
|
@ -134,7 +134,7 @@ void forward_deconvolutional_layer(const deconvolutional_layer l, network_state
|
||||
int n = l.h*l.w;
|
||||
int k = l.c;
|
||||
|
||||
bias_output(l.output, l.biases, l.batch, l.n, size);
|
||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *a = l.filters;
|
||||
@ -145,6 +145,7 @@ void forward_deconvolutional_layer(const deconvolutional_layer l, network_state
|
||||
|
||||
col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
|
||||
}
|
||||
add_bias(l.output, l.biases, l.batch, l.n, size);
|
||||
activate_array(l.output, l.batch*l.n*size, l.activation);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user