IOU loss function

This commit is contained in:
Joseph Redmon 2015-04-24 10:27:50 -07:00
parent feabcc31de
commit 989ab8c38a
8 changed files with 272 additions and 62 deletions

View File

@ -93,6 +93,7 @@ void visualize(char *cfgfile, char *weightfile)
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
//test_box();
//test_convolutional_layer(); //test_convolutional_layer();
if(argc < 2){ if(argc < 2){
fprintf(stderr, "usage: %s <function>\n", argv[0]); fprintf(stderr, "usage: %s <function>\n", argv[0]);

View File

@ -65,22 +65,22 @@ matrix load_image_paths(char **paths, int n, int w, int h)
return X; return X;
} }
typedef struct box{ typedef struct{
int id; int id;
float x,y,w,h; float x,y,w,h;
float left, right, top, bottom; float left, right, top, bottom;
} box; } box_label;
box *read_boxes(char *filename, int *n) box_label *read_boxes(char *filename, int *n)
{ {
box *boxes = calloc(1, sizeof(box)); box_label *boxes = calloc(1, sizeof(box_label));
FILE *file = fopen(filename, "r"); FILE *file = fopen(filename, "r");
if(!file) file_error(filename); if(!file) file_error(filename);
float x, y, h, w; float x, y, h, w;
int id; int id;
int count = 0; int count = 0;
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){ while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
boxes = realloc(boxes, (count+1)*sizeof(box)); boxes = realloc(boxes, (count+1)*sizeof(box_label));
boxes[count].id = id; boxes[count].id = id;
boxes[count].x = x; boxes[count].x = x;
boxes[count].y = y; boxes[count].y = y;
@ -97,11 +97,11 @@ box *read_boxes(char *filename, int *n)
return boxes; return boxes;
} }
void randomize_boxes(box *b, int n) void randomize_boxes(box_label *b, int n)
{ {
int i; int i;
for(i = 0; i < n; ++i){ for(i = 0; i < n; ++i){
box swap = b[i]; box_label swap = b[i];
int index = rand_r(&data_seed)%n; int index = rand_r(&data_seed)%n;
b[i] = b[index]; b[i] = b[index];
b[index] = swap; b[index] = swap;
@ -114,7 +114,7 @@ void fill_truth_detection(char *path, float *truth, int classes, int num_boxes,
labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count = 0; int count = 0;
box *boxes = read_boxes(labelpath, &count); box_label *boxes = read_boxes(labelpath, &count);
randomize_boxes(boxes, count); randomize_boxes(boxes, count);
float x,y,w,h; float x,y,w,h;
float left, top, right, bot; float left, top, right, bot;
@ -174,10 +174,10 @@ void fill_truth_detection(char *path, float *truth, int classes, int num_boxes,
if(background) truth[index++] = 0; if(background) truth[index++] = 0;
truth[index+id] = 1; truth[index+id] = 1;
index += classes; index += classes;
truth[index++] = y;
truth[index++] = x; truth[index++] = x;
truth[index++] = h; truth[index++] = y;
truth[index++] = w; truth[index++] = w;
truth[index++] = h;
} }
free(boxes); free(boxes);
} }

View File

@ -81,9 +81,9 @@ void train_detection(char *cfgfile, char *weightfile)
if (imgnet){ if (imgnet){
plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
}else{ }else{
//plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); plist = get_paths("/home/pjreddie/data/voc/trainall.txt");
//plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
} }
paths = (char **)list_to_array(plist); paths = (char **)list_to_array(plist);
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
@ -95,12 +95,12 @@ void train_detection(char *cfgfile, char *weightfile)
train = buffer; train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
/* /*
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
image copy = copy_image(im); image copy = copy_image(im);
draw_detection(copy, train.y.vals[114], 7); draw_detection(copy, train.y.vals[114], 7);
free_image(copy); free_image(copy);
*/ */
printf("Loaded: %lf seconds\n", sec(clock()-time)); printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock(); time=clock();
@ -120,30 +120,30 @@ void train_detection(char *cfgfile, char *weightfile)
void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box)
{ {
matrix pred = network_predict_data(net, d); matrix pred = network_predict_data(net, d);
int j, k, class; int j, k, class;
for(j = 0; j < pred.rows; ++j){ for(j = 0; j < pred.rows; ++j){
for(k = 0; k < pred.cols; k += per_box){ for(k = 0; k < pred.cols; k += per_box){
float scale = 1.; float scale = 1.;
int index = k/per_box; int index = k/per_box;
int row = index / num_boxes; int row = index / num_boxes;
int col = index % num_boxes; int col = index % num_boxes;
if (nuisance) scale = 1.-pred.vals[j][k]; if (nuisance) scale = 1.-pred.vals[j][k];
for (class = 0; class < classes; ++class){ for (class = 0; class < classes; ++class){
int ci = k+classes+background+nuisance; int ci = k+classes+background+nuisance;
float y = (pred.vals[j][ci + 0] + row)/num_boxes; float y = (pred.vals[j][ci + 0] + row)/num_boxes;
float x = (pred.vals[j][ci + 1] + col)/num_boxes; float x = (pred.vals[j][ci + 1] + col)/num_boxes;
float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
h = h*h; h = h*h;
float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
w = w*w; w = w*w;
float prob = scale*pred.vals[j][k+class+background+nuisance]; float prob = scale*pred.vals[j][k+class+background+nuisance];
if(prob < threshold) continue; if(prob < threshold) continue;
printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w);
}
} }
} }
free_matrix(pred); }
free_matrix(pred);
} }
void validate_detection(char *cfgfile, char *weightfile) void validate_detection(char *cfgfile, char *weightfile)

View File

@ -3,7 +3,9 @@
#include "softmax_layer.h" #include "softmax_layer.h"
#include "blas.h" #include "blas.h"
#include "cuda.h" #include "cuda.h"
#include "utils.h"
#include <stdio.h> #include <stdio.h>
#include <string.h>
#include <stdlib.h> #include <stdlib.h>
int get_detection_layer_locations(detection_layer layer) int get_detection_layer_locations(detection_layer layer)
@ -26,6 +28,8 @@ detection_layer *make_detection_layer(int batch, int inputs, int classes, int co
layer->coords = coords; layer->coords = coords;
layer->rescore = rescore; layer->rescore = rescore;
layer->nuisance = nuisance; layer->nuisance = nuisance;
layer->cost = calloc(1, sizeof(float));
layer->does_cost=1;
layer->background = background; layer->background = background;
int outputs = get_detection_layer_output_size(*layer); int outputs = get_detection_layer_output_size(*layer);
layer->output = calloc(batch*outputs, sizeof(float)); layer->output = calloc(batch*outputs, sizeof(float));
@ -63,6 +67,169 @@ void dark_zone(detection_layer layer, int class, int start, network_state state)
} }
} }
typedef struct{
float dx, dy, dw, dh;
} dbox;
dbox derivative(box a, box b)
{
dbox d;
d.dx = 0;
d.dw = 0;
float l1 = a.x - a.w/2;
float l2 = b.x - b.w/2;
if (l1 > l2){
d.dx -= 1;
d.dw += .5;
}
float r1 = a.x + a.w/2;
float r2 = b.x + b.w/2;
if(r1 < r2){
d.dx += 1;
d.dw += .5;
}
if (l1 > r2) {
d.dx = -1;
d.dw = 0;
}
if (r1 < l2){
d.dx = 1;
d.dw = 0;
}
d.dy = 0;
d.dh = 0;
float t1 = a.y - a.h/2;
float t2 = b.y - b.h/2;
if (t1 > t2){
d.dy -= 1;
d.dh += .5;
}
float b1 = a.y + a.h/2;
float b2 = b.y + b.h/2;
if(b1 < b2){
d.dy += 1;
d.dh += .5;
}
if (t1 > b2) {
d.dy = -1;
d.dh = 0;
}
if (b1 < t2){
d.dy = 1;
d.dh = 0;
}
return d;
}
float overlap(float x1, float w1, float x2, float w2)
{
float l1 = x1 - w1/2;
float l2 = x2 - w2/2;
float left = l1 > l2 ? l1 : l2;
float r1 = x1 + w1/2;
float r2 = x2 + w2/2;
float right = r1 < r2 ? r1 : r2;
return right - left;
}
float box_intersection(box a, box b)
{
float w = overlap(a.x, a.w, b.x, b.w);
float h = overlap(a.y, a.h, b.y, b.h);
if(w < 0 || h < 0) return 0;
float area = w*h;
return area;
}
float box_union(box a, box b)
{
float i = box_intersection(a, b);
float u = a.w*a.h + b.w*b.h - i;
return u;
}
float box_iou(box a, box b)
{
return box_intersection(a, b)/box_union(a, b);
}
dbox dintersect(box a, box b)
{
float w = overlap(a.x, a.w, b.x, b.w);
float h = overlap(a.y, a.h, b.y, b.h);
dbox dover = derivative(a, b);
dbox di;
di.dw = dover.dw*h;
di.dx = dover.dx*h;
di.dh = dover.dh*w;
di.dy = dover.dy*w;
if(h < 0 || w < 0){
di.dx = dover.dx;
di.dy = dover.dy;
}
return di;
}
dbox dunion(box a, box b)
{
dbox du = {0,0,0,0};;
float w = overlap(a.x, a.w, b.x, b.w);
float h = overlap(a.y, a.h, b.y, b.h);
if(w > 0 && h > 0){
dbox di = dintersect(a, b);
du.dw = h - di.dw;
du.dh = w - di.dw;
du.dx = -di.dx;
du.dy = -di.dy;
}
return du;
}
dbox diou(box a, box b)
{
float u = box_union(a,b);
float i = box_intersection(a,b);
dbox di = dintersect(a,b);
dbox du = dunion(a,b);
dbox dd = {0,0,0,0};
if(i < 0) {
dd.dx = b.x - a.x;
dd.dy = b.y - a.y;
dd.dw = b.w - a.w;
dd.dh = b.h - a.h;
return dd;
}
dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u);
dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u);
dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u);
dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u);
return dd;
}
void test_box()
{
box a = {1, 1, 1, 1};
box b = {0, 0, .5, .2};
int count = 0;
while(count++ < 300){
dbox d = diou(a, b);
printf("%f %f %f %f\n", a.x, a.y, a.w, a.h);
a.x += .1*d.dx;
a.w += .1*d.dw;
a.y += .1*d.dy;
a.h += .1*d.dh;
printf("inter: %f\n", box_intersection(a, b));
printf("union: %f\n", box_union(a, b));
printf("IOU: %f\n", box_iou(a, b));
if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) {
printf("break!!!\n");
break;
}
}
}
void forward_detection_layer(const detection_layer layer, network_state state) void forward_detection_layer(const detection_layer layer, network_state state)
{ {
int in_i = 0; int in_i = 0;
@ -92,31 +259,63 @@ void forward_detection_layer(const detection_layer layer, network_state state)
layer.output[out_i++] = mask*state.input[in_i++]; layer.output[out_i++] = mask*state.input[in_i++];
} }
} }
/* if(layer.does_cost){
int count = 0; *(layer.cost) = 0;
for(i = 0; i < layer.batch*locations; ++i){ int size = get_detection_layer_output_size(layer) * layer.batch;
for(j = 0; j < layer.classes+layer.background; ++j){ memset(layer.delta, 0, size * sizeof(float));
printf("%f, ", layer.output[count++]);
}
printf("\n");
for(j = 0; j < layer.coords; ++j){
printf("%f, ", layer.output[count++]);
}
printf("\n");
}
*/
/*
if(layer.background || 1){
for(i = 0; i < layer.batch*locations; ++i){ for(i = 0; i < layer.batch*locations; ++i){
int index = i*(layer.classes+layer.coords+layer.background); int classes = layer.nuisance+layer.classes;
for(j= 0; j < layer.classes; ++j){ int offset = i*(classes+layer.coords);
if(state.truth[index+j+layer.background]){ for(j = offset; j < offset+classes; ++j){
//dark_zone(layer, j, index, state); *(layer.cost) += pow(state.truth[j] - layer.output[j], 2);
} layer.delta[j] = state.truth[j] - layer.output[j];
} }
box truth;
truth.x = state.truth[j+0];
truth.y = state.truth[j+1];
truth.w = state.truth[j+2];
truth.h = state.truth[j+3];
box out;
out.x = layer.output[j+0];
out.y = layer.output[j+1];
out.w = layer.output[j+2];
out.h = layer.output[j+3];
if(!(truth.w*truth.h)) continue;
float iou = box_iou(truth, out);
//printf("iou: %f\n", iou);
*(layer.cost) += pow((1-iou), 2);
dbox d = diou(out, truth);
layer.delta[j+0] = d.dx;
layer.delta[j+1] = d.dy;
layer.delta[j+2] = d.dw;
layer.delta[j+3] = d.dh;
} }
} }
*/ /*
int count = 0;
for(i = 0; i < layer.batch*locations; ++i){
for(j = 0; j < layer.classes+layer.background; ++j){
printf("%f, ", layer.output[count++]);
}
printf("\n");
for(j = 0; j < layer.coords; ++j){
printf("%f, ", layer.output[count++]);
}
printf("\n");
}
*/
/*
if(layer.background || 1){
for(i = 0; i < layer.batch*locations; ++i){
int index = i*(layer.classes+layer.coords+layer.background);
for(j= 0; j < layer.classes; ++j){
if(state.truth[index+j+layer.background]){
//dark_zone(layer, j, index, state);
}
}
}
}
*/
} }
void backward_detection_layer(const detection_layer layer, network_state state) void backward_detection_layer(const detection_layer layer, network_state state)
@ -164,6 +363,7 @@ void forward_detection_layer_gpu(const detection_layer layer, network_state stat
cpu_state.input = in_cpu; cpu_state.input = in_cpu;
forward_detection_layer(layer, cpu_state); forward_detection_layer(layer, cpu_state);
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
free(cpu_state.input); free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth); if(cpu_state.truth) free(cpu_state.truth);
} }

View File

@ -11,6 +11,8 @@ typedef struct {
int background; int background;
int rescore; int rescore;
int nuisance; int nuisance;
int does_cost;
float *cost;
float *output; float *output;
float *delta; float *delta;
#ifdef GPU #ifdef GPU

View File

@ -47,7 +47,7 @@ void train_imagenet(char *cfgfile, char *weightfile)
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train); free_data(train);
//if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97;
if(i%100==0){ if(i%1000==0){
char buff[256]; char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff); save_weights(net, buff);

View File

@ -186,6 +186,9 @@ float get_network_cost(network net)
if(net.types[net.n-1] == COST){ if(net.types[net.n-1] == COST){
return ((cost_layer *)net.layers[net.n-1])->output[0]; return ((cost_layer *)net.layers[net.n-1])->output[0];
} }
if(net.types[net.n-1] == DETECTION){
return ((detection_layer *)net.layers[net.n-1])->cost[0];
}
return 0; return 0;
} }

View File

@ -36,5 +36,9 @@ float variance_array(float *a, int n);
float mag_array(float *a, int n); float mag_array(float *a, int n);
float **one_hot_encode(float *a, int n, int k); float **one_hot_encode(float *a, int n, int k);
float sec(clock_t clocks); float sec(clock_t clocks);
typedef struct{
float x, y, w, h;
} box;
#endif #endif