mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
stable
This commit is contained in:
parent
c7b10ceadb
commit
9942d48412
6
Makefile
6
Makefile
@ -1,5 +1,5 @@
|
|||||||
GPU=0
|
GPU=1
|
||||||
OPENCV=0
|
OPENCV=1
|
||||||
DEBUG=0
|
DEBUG=0
|
||||||
|
|
||||||
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
|
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
|
||||||
@ -34,7 +34,7 @@ CFLAGS+= -DGPU
|
|||||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
||||||
endif
|
endif
|
||||||
|
|
||||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o
|
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo2.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o
|
||||||
ifeq ($(GPU), 1)
|
ifeq ($(GPU), 1)
|
||||||
LDFLAGS+= -lstdc++
|
LDFLAGS+= -lstdc++
|
||||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||||
|
@ -135,6 +135,20 @@ void backward_batchnorm_layer(const layer layer, network_state state)
|
|||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
|
|
||||||
|
void pull_batchnorm_layer(layer l)
|
||||||
|
{
|
||||||
|
cuda_pull_array(l.scales_gpu, l.scales, l.c);
|
||||||
|
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
|
||||||
|
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
|
||||||
|
}
|
||||||
|
void push_batchnorm_layer(layer l)
|
||||||
|
{
|
||||||
|
cuda_push_array(l.scales_gpu, l.scales, l.c);
|
||||||
|
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
|
||||||
|
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
|
||||||
|
}
|
||||||
|
|
||||||
void forward_batchnorm_layer_gpu(layer l, network_state state)
|
void forward_batchnorm_layer_gpu(layer l, network_state state)
|
||||||
{
|
{
|
||||||
if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
|
if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
|
||||||
|
@ -12,6 +12,8 @@ void backward_batchnorm_layer(layer l, network_state state);
|
|||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
void forward_batchnorm_layer_gpu(layer l, network_state state);
|
void forward_batchnorm_layer_gpu(layer l, network_state state);
|
||||||
void backward_batchnorm_layer_gpu(layer l, network_state state);
|
void backward_batchnorm_layer_gpu(layer l, network_state state);
|
||||||
|
void pull_batchnorm_layer(layer l);
|
||||||
|
void push_batchnorm_layer(layer l);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
99
src/data.c
99
src/data.c
@ -271,78 +271,37 @@ void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int
|
|||||||
free(boxes);
|
free(boxes);
|
||||||
}
|
}
|
||||||
|
|
||||||
void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
|
void fill_truth_detection(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
|
||||||
{
|
{
|
||||||
char *labelpath = find_replace(path, "JPEGImages", "labels");
|
char *labelpath = find_replace(path, "images", "labels");
|
||||||
|
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||||
|
|
||||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||||
|
labelpath = find_replace(labelpath, ".JPG", ".txt");
|
||||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||||
int count = 0;
|
int count = 0;
|
||||||
box_label *boxes = read_boxes(labelpath, &count);
|
box_label *boxes = read_boxes(labelpath, &count);
|
||||||
randomize_boxes(boxes, count);
|
randomize_boxes(boxes, count);
|
||||||
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
|
||||||
|
if(count > 17) count = 17;
|
||||||
float x,y,w,h;
|
float x,y,w,h;
|
||||||
float left, top, right, bot;
|
|
||||||
int id;
|
int id;
|
||||||
int i;
|
int i;
|
||||||
if(background){
|
|
||||||
for(i = 0; i < num_boxes*num_boxes*(4+classes+background); i += 4+classes+background){
|
for (i = 0; i < count; ++i) {
|
||||||
truth[i] = 1;
|
x = boxes[i].x;
|
||||||
}
|
y = boxes[i].y;
|
||||||
}
|
w = boxes[i].w;
|
||||||
for(i = 0; i < count; ++i){
|
h = boxes[i].h;
|
||||||
left = boxes[i].left * sx - dx;
|
|
||||||
right = boxes[i].right * sx - dx;
|
|
||||||
top = boxes[i].top * sy - dy;
|
|
||||||
bot = boxes[i].bottom* sy - dy;
|
|
||||||
id = boxes[i].id;
|
id = boxes[i].id;
|
||||||
|
|
||||||
if(flip){
|
|
||||||
float swap = left;
|
|
||||||
left = 1. - right;
|
|
||||||
right = 1. - swap;
|
|
||||||
}
|
|
||||||
|
|
||||||
left = constrain(0, 1, left);
|
|
||||||
right = constrain(0, 1, right);
|
|
||||||
top = constrain(0, 1, top);
|
|
||||||
bot = constrain(0, 1, bot);
|
|
||||||
|
|
||||||
x = (left+right)/2;
|
|
||||||
y = (top+bot)/2;
|
|
||||||
w = (right - left);
|
|
||||||
h = (bot - top);
|
|
||||||
|
|
||||||
if (x <= 0 || x >= 1 || y <= 0 || y >= 1) continue;
|
|
||||||
|
|
||||||
int col = (int)(x*num_boxes);
|
|
||||||
int row = (int)(y*num_boxes);
|
|
||||||
|
|
||||||
x = x*num_boxes - col;
|
|
||||||
y = y*num_boxes - row;
|
|
||||||
|
|
||||||
/*
|
|
||||||
float maxwidth = distance_from_edge(i, num_boxes);
|
|
||||||
float maxheight = distance_from_edge(j, num_boxes);
|
|
||||||
w = w/maxwidth;
|
|
||||||
h = h/maxheight;
|
|
||||||
*/
|
|
||||||
|
|
||||||
w = constrain(0, 1, w);
|
|
||||||
h = constrain(0, 1, h);
|
|
||||||
if (w < .01 || h < .01) continue;
|
if (w < .01 || h < .01) continue;
|
||||||
if(1){
|
|
||||||
w = pow(w, 1./2.);
|
|
||||||
h = pow(h, 1./2.);
|
|
||||||
}
|
|
||||||
|
|
||||||
int index = (col+row*num_boxes)*(4+classes+background);
|
truth[i*5] = id;
|
||||||
if(truth[index+classes+background+2]) continue;
|
truth[i*5+2] = x;
|
||||||
if(background) truth[index++] = 0;
|
truth[i*5+3] = y;
|
||||||
truth[index+id] = 1;
|
truth[i*5+4] = w;
|
||||||
index += classes;
|
truth[i*5+5] = h;
|
||||||
truth[index++] = x;
|
|
||||||
truth[index++] = y;
|
|
||||||
truth[index++] = w;
|
|
||||||
truth[index++] = h;
|
|
||||||
}
|
}
|
||||||
free(boxes);
|
free(boxes);
|
||||||
}
|
}
|
||||||
@ -485,6 +444,7 @@ data load_data_region(int n, char **paths, int m, int w, int h, int size, int cl
|
|||||||
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
||||||
d.X.cols = h*w*3;
|
d.X.cols = h*w*3;
|
||||||
|
|
||||||
|
|
||||||
int k = size*size*(5+classes);
|
int k = size*size*(5+classes);
|
||||||
d.y = make_matrix(n, k);
|
d.y = make_matrix(n, k);
|
||||||
for(i = 0; i < n; ++i){
|
for(i = 0; i < n; ++i){
|
||||||
@ -641,7 +601,7 @@ data load_data_swag(char **paths, int n, int classes, float jitter)
|
|||||||
return d;
|
return d;
|
||||||
}
|
}
|
||||||
|
|
||||||
data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background)
|
data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter)
|
||||||
{
|
{
|
||||||
char **random_paths = get_random_paths(paths, n, m);
|
char **random_paths = get_random_paths(paths, n, m);
|
||||||
int i;
|
int i;
|
||||||
@ -652,16 +612,15 @@ data load_data_detection(int n, char **paths, int m, int classes, int w, int h,
|
|||||||
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
d.X.vals = calloc(d.X.rows, sizeof(float*));
|
||||||
d.X.cols = h*w*3;
|
d.X.cols = h*w*3;
|
||||||
|
|
||||||
int k = num_boxes*num_boxes*(4+classes+background);
|
d.y = make_matrix(n, 5*boxes);
|
||||||
d.y = make_matrix(n, k);
|
|
||||||
for(i = 0; i < n; ++i){
|
for(i = 0; i < n; ++i){
|
||||||
image orig = load_image_color(random_paths[i], 0, 0);
|
image orig = load_image_color(random_paths[i], 0, 0);
|
||||||
|
|
||||||
int oh = orig.h;
|
int oh = orig.h;
|
||||||
int ow = orig.w;
|
int ow = orig.w;
|
||||||
|
|
||||||
int dw = ow/10;
|
int dw = (ow*jitter);
|
||||||
int dh = oh/10;
|
int dh = (oh*jitter);
|
||||||
|
|
||||||
int pleft = rand_uniform(-dw, dw);
|
int pleft = rand_uniform(-dw, dw);
|
||||||
int pright = rand_uniform(-dw, dw);
|
int pright = rand_uniform(-dw, dw);
|
||||||
@ -674,13 +633,6 @@ data load_data_detection(int n, char **paths, int m, int classes, int w, int h,
|
|||||||
float sx = (float)swidth / ow;
|
float sx = (float)swidth / ow;
|
||||||
float sy = (float)sheight / oh;
|
float sy = (float)sheight / oh;
|
||||||
|
|
||||||
/*
|
|
||||||
float angle = rand_uniform()*.1 - .05;
|
|
||||||
image rot = rotate_image(orig, angle);
|
|
||||||
free_image(orig);
|
|
||||||
orig = rot;
|
|
||||||
*/
|
|
||||||
|
|
||||||
int flip = rand_r(&data_seed)%2;
|
int flip = rand_r(&data_seed)%2;
|
||||||
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
|
||||||
|
|
||||||
@ -691,7 +643,7 @@ data load_data_detection(int n, char **paths, int m, int classes, int w, int h,
|
|||||||
if(flip) flip_image(sized);
|
if(flip) flip_image(sized);
|
||||||
d.X.vals[i] = sized.data;
|
d.X.vals[i] = sized.data;
|
||||||
|
|
||||||
fill_truth_detection(random_paths[i], d.y.vals[i], classes, num_boxes, flip, background, dx, dy, 1./sx, 1./sy);
|
fill_truth_detection(random_paths[i], d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
|
||||||
|
|
||||||
free_image(orig);
|
free_image(orig);
|
||||||
free_image(cropped);
|
free_image(cropped);
|
||||||
@ -700,6 +652,7 @@ data load_data_detection(int n, char **paths, int m, int classes, int w, int h,
|
|||||||
return d;
|
return d;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void *load_thread(void *ptr)
|
void *load_thread(void *ptr)
|
||||||
{
|
{
|
||||||
|
|
||||||
@ -717,7 +670,7 @@ void *load_thread(void *ptr)
|
|||||||
} else if (a.type == STUDY_DATA){
|
} else if (a.type == STUDY_DATA){
|
||||||
*a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
|
*a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
|
||||||
} else if (a.type == DETECTION_DATA){
|
} else if (a.type == DETECTION_DATA){
|
||||||
*a.d = load_data_detection(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background);
|
*a.d = load_data_detection(a.n, a.num_boxes, a.paths, a.m, a.classes, a.w, a.h, a.background);
|
||||||
} else if (a.type == WRITING_DATA){
|
} else if (a.type == WRITING_DATA){
|
||||||
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
|
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
|
||||||
} else if (a.type == REGION_DATA){
|
} else if (a.type == REGION_DATA){
|
||||||
|
@ -25,10 +25,12 @@ typedef struct{
|
|||||||
matrix y;
|
matrix y;
|
||||||
int *indexes;
|
int *indexes;
|
||||||
int shallow;
|
int shallow;
|
||||||
|
int *num_boxes;
|
||||||
|
box **boxes;
|
||||||
} data;
|
} data;
|
||||||
|
|
||||||
typedef enum {
|
typedef enum {
|
||||||
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA
|
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA
|
||||||
} data_type;
|
} data_type;
|
||||||
|
|
||||||
typedef struct load_args{
|
typedef struct load_args{
|
||||||
@ -68,7 +70,7 @@ void print_letters(float *pred, int n);
|
|||||||
data load_data_captcha(char **paths, int n, int m, int k, int w, int h);
|
data load_data_captcha(char **paths, int n, int m, int k, int w, int h);
|
||||||
data load_data_captcha_encode(char **paths, int n, int m, int w, int h);
|
data load_data_captcha_encode(char **paths, int n, int m, int w, int h);
|
||||||
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
|
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
|
||||||
data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background);
|
data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter);
|
||||||
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
|
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
|
||||||
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
|
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
|
||||||
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
|
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
|
||||||
|
33
src/parser.c
33
src/parser.c
@ -852,6 +852,18 @@ void save_convolutional_weights(layer l, FILE *fp)
|
|||||||
fwrite(l.filters, sizeof(float), num, fp);
|
fwrite(l.filters, sizeof(float), num, fp);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void save_batchnorm_weights(layer l, FILE *fp)
|
||||||
|
{
|
||||||
|
#ifdef GPU
|
||||||
|
if(gpu_index >= 0){
|
||||||
|
pull_batchnorm_layer(l);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
fwrite(l.scales, sizeof(float), l.c, fp);
|
||||||
|
fwrite(l.rolling_mean, sizeof(float), l.c, fp);
|
||||||
|
fwrite(l.rolling_variance, sizeof(float), l.c, fp);
|
||||||
|
}
|
||||||
|
|
||||||
void save_connected_weights(layer l, FILE *fp)
|
void save_connected_weights(layer l, FILE *fp)
|
||||||
{
|
{
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
@ -889,6 +901,8 @@ void save_weights_upto(network net, char *filename, int cutoff)
|
|||||||
save_convolutional_weights(l, fp);
|
save_convolutional_weights(l, fp);
|
||||||
} if(l.type == CONNECTED){
|
} if(l.type == CONNECTED){
|
||||||
save_connected_weights(l, fp);
|
save_connected_weights(l, fp);
|
||||||
|
} if(l.type == BATCHNORM){
|
||||||
|
save_batchnorm_weights(l, fp);
|
||||||
} if(l.type == RNN){
|
} if(l.type == RNN){
|
||||||
save_connected_weights(*(l.input_layer), fp);
|
save_connected_weights(*(l.input_layer), fp);
|
||||||
save_connected_weights(*(l.self_layer), fp);
|
save_connected_weights(*(l.self_layer), fp);
|
||||||
@ -943,8 +957,8 @@ void load_connected_weights(layer l, FILE *fp, int transpose)
|
|||||||
if(transpose){
|
if(transpose){
|
||||||
transpose_matrix(l.weights, l.inputs, l.outputs);
|
transpose_matrix(l.weights, l.inputs, l.outputs);
|
||||||
}
|
}
|
||||||
//printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs));
|
//printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs));
|
||||||
//printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs));
|
//printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs));
|
||||||
if (l.batch_normalize && (!l.dontloadscales)){
|
if (l.batch_normalize && (!l.dontloadscales)){
|
||||||
fread(l.scales, sizeof(float), l.outputs, fp);
|
fread(l.scales, sizeof(float), l.outputs, fp);
|
||||||
fread(l.rolling_mean, sizeof(float), l.outputs, fp);
|
fread(l.rolling_mean, sizeof(float), l.outputs, fp);
|
||||||
@ -960,6 +974,18 @@ void load_connected_weights(layer l, FILE *fp, int transpose)
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void load_batchnorm_weights(layer l, FILE *fp)
|
||||||
|
{
|
||||||
|
fread(l.scales, sizeof(float), l.c, fp);
|
||||||
|
fread(l.rolling_mean, sizeof(float), l.c, fp);
|
||||||
|
fread(l.rolling_variance, sizeof(float), l.c, fp);
|
||||||
|
#ifdef GPU
|
||||||
|
if(gpu_index >= 0){
|
||||||
|
push_batchnorm_layer(l);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
void load_convolutional_weights_binary(layer l, FILE *fp)
|
void load_convolutional_weights_binary(layer l, FILE *fp)
|
||||||
{
|
{
|
||||||
fread(l.biases, sizeof(float), l.n, fp);
|
fread(l.biases, sizeof(float), l.n, fp);
|
||||||
@ -1053,6 +1079,9 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
|||||||
if(l.type == CONNECTED){
|
if(l.type == CONNECTED){
|
||||||
load_connected_weights(l, fp, transpose);
|
load_connected_weights(l, fp, transpose);
|
||||||
}
|
}
|
||||||
|
if(l.type == BATCHNORM){
|
||||||
|
load_batchnorm_weights(l, fp);
|
||||||
|
}
|
||||||
if(l.type == CRNN){
|
if(l.type == CRNN){
|
||||||
load_convolutional_weights(*(l.input_layer), fp);
|
load_convolutional_weights(*(l.input_layer), fp);
|
||||||
load_convolutional_weights(*(l.self_layer), fp);
|
load_convolutional_weights(*(l.self_layer), fp);
|
||||||
|
61
src/rnn.c
61
src/rnn.c
@ -183,7 +183,7 @@ void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float t
|
|||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
void valid_char_rnn(char *cfgfile, char *weightfile)
|
void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||||
{
|
{
|
||||||
char *base = basecfg(cfgfile);
|
char *base = basecfg(cfgfile);
|
||||||
fprintf(stderr, "%s\n", base);
|
fprintf(stderr, "%s\n", base);
|
||||||
@ -196,18 +196,22 @@ void valid_char_rnn(char *cfgfile, char *weightfile)
|
|||||||
|
|
||||||
int count = 0;
|
int count = 0;
|
||||||
int c;
|
int c;
|
||||||
|
int len = strlen(seed);
|
||||||
float *input = calloc(inputs, sizeof(float));
|
float *input = calloc(inputs, sizeof(float));
|
||||||
int i;
|
int i;
|
||||||
for(i = 0; i < 100; ++i){
|
for(i = 0; i < len; ++i){
|
||||||
|
c = seed[i];
|
||||||
|
input[(int)c] = 1;
|
||||||
network_predict(net, input);
|
network_predict(net, input);
|
||||||
|
input[(int)c] = 0;
|
||||||
}
|
}
|
||||||
float sum = 0;
|
float sum = 0;
|
||||||
c = getc(stdin);
|
c = getc(stdin);
|
||||||
float log2 = log(2);
|
float log2 = log(2);
|
||||||
while(c != EOF){
|
while(c != EOF){
|
||||||
int next = getc(stdin);
|
int next = getc(stdin);
|
||||||
if(next < 0 || next >= 255) error("Out of range character");
|
|
||||||
if(next == EOF) break;
|
if(next == EOF) break;
|
||||||
|
if(next < 0 || next >= 255) error("Out of range character");
|
||||||
++count;
|
++count;
|
||||||
input[c] = 1;
|
input[c] = 1;
|
||||||
float *out = network_predict(net, input);
|
float *out = network_predict(net, input);
|
||||||
@ -218,6 +222,52 @@ void valid_char_rnn(char *cfgfile, char *weightfile)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||||
|
{
|
||||||
|
char *base = basecfg(cfgfile);
|
||||||
|
fprintf(stderr, "%s\n", base);
|
||||||
|
|
||||||
|
network net = parse_network_cfg(cfgfile);
|
||||||
|
if(weightfile){
|
||||||
|
load_weights(&net, weightfile);
|
||||||
|
}
|
||||||
|
int inputs = get_network_input_size(net);
|
||||||
|
|
||||||
|
int c;
|
||||||
|
int seed_len = strlen(seed);
|
||||||
|
float *input = calloc(inputs, sizeof(float));
|
||||||
|
int i;
|
||||||
|
char *line;
|
||||||
|
while((line=fgetl(stdin)) != 0){
|
||||||
|
reset_rnn_state(net, 0);
|
||||||
|
for(i = 0; i < seed_len; ++i){
|
||||||
|
c = seed[i];
|
||||||
|
input[(int)c] = 1;
|
||||||
|
network_predict(net, input);
|
||||||
|
input[(int)c] = 0;
|
||||||
|
}
|
||||||
|
strip(line);
|
||||||
|
int str_len = strlen(line);
|
||||||
|
for(i = 0; i < str_len; ++i){
|
||||||
|
c = line[i];
|
||||||
|
input[(int)c] = 1;
|
||||||
|
network_predict(net, input);
|
||||||
|
input[(int)c] = 0;
|
||||||
|
}
|
||||||
|
c = ' ';
|
||||||
|
input[(int)c] = 1;
|
||||||
|
network_predict(net, input);
|
||||||
|
input[(int)c] = 0;
|
||||||
|
|
||||||
|
layer l = net.layers[0];
|
||||||
|
cuda_pull_array(l.output_gpu, l.output, l.outputs);
|
||||||
|
printf("%s", line);
|
||||||
|
for(i = 0; i < l.outputs; ++i){
|
||||||
|
printf(",%g", l.output[i]);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void run_char_rnn(int argc, char **argv)
|
void run_char_rnn(int argc, char **argv)
|
||||||
{
|
{
|
||||||
@ -226,7 +276,7 @@ void run_char_rnn(int argc, char **argv)
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
|
char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
|
||||||
char *seed = find_char_arg(argc, argv, "-seed", "\n");
|
char *seed = find_char_arg(argc, argv, "-seed", "\n\n");
|
||||||
int len = find_int_arg(argc, argv, "-len", 1000);
|
int len = find_int_arg(argc, argv, "-len", 1000);
|
||||||
float temp = find_float_arg(argc, argv, "-temp", .7);
|
float temp = find_float_arg(argc, argv, "-temp", .7);
|
||||||
int rseed = find_int_arg(argc, argv, "-srand", time(0));
|
int rseed = find_int_arg(argc, argv, "-srand", time(0));
|
||||||
@ -235,6 +285,7 @@ void run_char_rnn(int argc, char **argv)
|
|||||||
char *cfg = argv[3];
|
char *cfg = argv[3];
|
||||||
char *weights = (argc > 4) ? argv[4] : 0;
|
char *weights = (argc > 4) ? argv[4] : 0;
|
||||||
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear);
|
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear);
|
||||||
else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights);
|
else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
|
||||||
|
else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
|
||||||
else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed);
|
else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed);
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user