🔥 crush. crush. admit. 🔥

This commit is contained in:
Joseph Redmon
2016-11-11 08:48:40 -08:00
parent 4b60afcc64
commit 9a01e6ccb7
4 changed files with 328 additions and 170 deletions

View File

@ -10,8 +10,9 @@
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
list *options = read_data_cfg(datacfg);
char *train_images = option_find_str(options, "train", "data/train.list");
@ -21,14 +22,28 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
network *nets = calloc(ngpus, sizeof(network));
srand(time(0));
int seed = rand();
int i;
for(i = 0; i < ngpus; ++i){
srand(seed);
#ifdef GPU
cuda_set_device(gpus[i]);
#endif
nets[i] = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&nets[i], weightfile);
}
if(clear) *nets[i].seen = 0;
nets[i].learning_rate *= ngpus;
}
if(clear) *net.seen = 0;
srand(time(0));
network net = nets[0];
int imgs = net.batch * net.subdivisions * ngpus;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
data train, buffer;
layer l = net.layers[net.n - 1];
@ -62,37 +77,46 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data(args);
/*
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[10] + 1 + k*5);
if(!b.x) break;
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
}
image im = float_to_image(448, 448, 3, train.X.vals[10]);
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[10] + 1 + k*5);
printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
draw_bbox(im, b, 8, 1,0,0);
}
save_image(im, "truth11");
*/
/*
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[10] + 1 + k*5);
if(!b.x) break;
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
}
image im = float_to_image(448, 448, 3, train.X.vals[10]);
int k;
for(k = 0; k < l.max_boxes; ++k){
box b = float_to_box(train.y.vals[10] + 1 + k*5);
printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
draw_bbox(im, b, 8, 1,0,0);
}
save_image(im, "truth11");
*/
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
float loss = 0;
#ifdef GPU
if(ngpus == 1){
loss = train_network(net, train);
} else {
loss = train_networks(nets, ngpus, train, 4);
}
#else
loss = train_network(net, train);
#endif
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
i = get_current_batch(net);
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0 || (i < 1000 && i%100 == 0)){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
@ -105,6 +129,39 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
save_weights(net, buff);
}
static int get_coco_image_id(char *filename)
{
char *p = strrchr(filename, '_');
return atoi(p+1);
}
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
int i, j;
int image_id = get_coco_image_id(image_path);
for(i = 0; i < num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
float bx = xmin;
float by = ymin;
float bw = xmax - xmin;
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
}
}
}
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
{
int i, j;
@ -131,8 +188,19 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
list *options = read_data_cfg(datacfg);
char *valid_images = option_find_str(options, "valid", "data/train.list");
char *name_list = option_find_str(options, "names", "data/names.list");
char *prefix = option_find_str(options, "results", "results");
char **names = get_labels(name_list);
char buff[1024];
int coco = option_find_int_quiet(options, "coco", 0);
FILE *coco_fp = 0;
if(coco){
snprintf(buff, 1024, "%s/coco_results.json", prefix);
coco_fp = fopen(buff, "w");
fprintf(coco_fp, "[\n");
}
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
@ -141,7 +209,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "results/comp4_det_test_";
char *base = "comp4_det_test_";
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
@ -151,8 +219,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
int j;
FILE **fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
char buff[1024];
snprintf(buff, 1024, "%s%s.txt", base, names[j]);
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
@ -207,7 +274,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
int h = val[t].h;
get_region_boxes(l, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
if(coco_fp){
print_cocos(coco_fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
}else{
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
}
free(id);
free_image(val[t]);
free_image(val_resized[t]);
@ -216,6 +287,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
for(j = 0; j < classes; ++j){
fclose(fps[j]);
}
if(coco_fp){
fseek(coco_fp, -2, SEEK_CUR);
fprintf(coco_fp, "\n]\n");
fclose(coco_fp);
}
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
@ -300,8 +376,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
{
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list);
image **alphabet = load_alphabet();
network net = parse_network_cfg(cfgfile);
@ -361,6 +437,29 @@ void run_detector(int argc, char **argv)
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
int *gpus = 0;
int gpu = 0;
int ngpus = 0;
if(gpu_list){
printf("%s\n", gpu_list);
int len = strlen(gpu_list);
ngpus = 1;
int i;
for(i = 0; i < len; ++i){
if (gpu_list[i] == ',') ++ngpus;
}
gpus = calloc(ngpus, sizeof(int));
for(i = 0; i < ngpus; ++i){
gpus[i] = atoi(gpu_list);
gpu_list = strchr(gpu_list, ',')+1;
}
} else {
gpu = gpu_index;
gpus = &gpu;
ngpus = 1;
}
int clear = find_arg(argc, argv, "-clear");
char *datacfg = argv[3];
@ -368,7 +467,7 @@ void run_detector(int argc, char **argv)
char *weights = (argc > 5) ? argv[5] : 0;
char *filename = (argc > 6) ? argv[6]: 0;
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, clear);
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
else if(0==strcmp(argv[2], "demo")) {