mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
🔥 crush. crush. admit. 🔥
This commit is contained in:
165
src/detector.c
165
src/detector.c
@ -10,8 +10,9 @@
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
|
||||
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
{
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *train_images = option_find_str(options, "train", "data/train.list");
|
||||
@ -21,14 +22,28 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
network *nets = calloc(ngpus, sizeof(network));
|
||||
|
||||
srand(time(0));
|
||||
int seed = rand();
|
||||
int i;
|
||||
for(i = 0; i < ngpus; ++i){
|
||||
srand(seed);
|
||||
#ifdef GPU
|
||||
cuda_set_device(gpus[i]);
|
||||
#endif
|
||||
nets[i] = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&nets[i], weightfile);
|
||||
}
|
||||
if(clear) *nets[i].seen = 0;
|
||||
nets[i].learning_rate *= ngpus;
|
||||
}
|
||||
if(clear) *net.seen = 0;
|
||||
srand(time(0));
|
||||
network net = nets[0];
|
||||
|
||||
int imgs = net.batch * net.subdivisions * ngpus;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
int i = *net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
@ -62,37 +77,46 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
clock_t time;
|
||||
//while(i*imgs < N*120){
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data(args);
|
||||
|
||||
/*
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
if(!b.x) break;
|
||||
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
|
||||
}
|
||||
image im = float_to_image(448, 448, 3, train.X.vals[10]);
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
|
||||
draw_bbox(im, b, 8, 1,0,0);
|
||||
}
|
||||
save_image(im, "truth11");
|
||||
*/
|
||||
/*
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
if(!b.x) break;
|
||||
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
|
||||
}
|
||||
image im = float_to_image(448, 448, 3, train.X.vals[10]);
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
|
||||
draw_bbox(im, b, 8, 1,0,0);
|
||||
}
|
||||
save_image(im, "truth11");
|
||||
*/
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
float loss = 0;
|
||||
#ifdef GPU
|
||||
if(ngpus == 1){
|
||||
loss = train_network(net, train);
|
||||
} else {
|
||||
loss = train_networks(nets, ngpus, train, 4);
|
||||
}
|
||||
#else
|
||||
loss = train_network(net, train);
|
||||
#endif
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
i = get_current_batch(net);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
if(i%1000==0 || (i < 1000 && i%100 == 0)){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
@ -105,6 +129,39 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
|
||||
static int get_coco_image_id(char *filename)
|
||||
{
|
||||
char *p = strrchr(filename, '_');
|
||||
return atoi(p+1);
|
||||
}
|
||||
|
||||
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
int image_id = get_coco_image_id(image_path);
|
||||
for(i = 0; i < num_boxes; ++i){
|
||||
float xmin = boxes[i].x - boxes[i].w/2.;
|
||||
float xmax = boxes[i].x + boxes[i].w/2.;
|
||||
float ymin = boxes[i].y - boxes[i].h/2.;
|
||||
float ymax = boxes[i].y + boxes[i].h/2.;
|
||||
|
||||
if (xmin < 0) xmin = 0;
|
||||
if (ymin < 0) ymin = 0;
|
||||
if (xmax > w) xmax = w;
|
||||
if (ymax > h) ymax = h;
|
||||
|
||||
float bx = xmin;
|
||||
float by = ymin;
|
||||
float bw = xmax - xmin;
|
||||
float bh = ymax - ymin;
|
||||
|
||||
for(j = 0; j < classes; ++j){
|
||||
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
@ -131,8 +188,19 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *valid_images = option_find_str(options, "valid", "data/train.list");
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
char *prefix = option_find_str(options, "results", "results");
|
||||
char **names = get_labels(name_list);
|
||||
|
||||
|
||||
char buff[1024];
|
||||
int coco = option_find_int_quiet(options, "coco", 0);
|
||||
FILE *coco_fp = 0;
|
||||
if(coco){
|
||||
snprintf(buff, 1024, "%s/coco_results.json", prefix);
|
||||
coco_fp = fopen(buff, "w");
|
||||
fprintf(coco_fp, "[\n");
|
||||
}
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
@ -141,7 +209,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *base = "results/comp4_det_test_";
|
||||
char *base = "comp4_det_test_";
|
||||
list *plist = get_paths(valid_images);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
@ -151,8 +219,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
int j;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
for(j = 0; j < classes; ++j){
|
||||
char buff[1024];
|
||||
snprintf(buff, 1024, "%s%s.txt", base, names[j]);
|
||||
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
@ -207,7 +274,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
int h = val[t].h;
|
||||
get_region_boxes(l, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
|
||||
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
if(coco_fp){
|
||||
print_cocos(coco_fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
}else{
|
||||
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
}
|
||||
free(id);
|
||||
free_image(val[t]);
|
||||
free_image(val_resized[t]);
|
||||
@ -216,6 +287,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
for(j = 0; j < classes; ++j){
|
||||
fclose(fps[j]);
|
||||
}
|
||||
if(coco_fp){
|
||||
fseek(coco_fp, -2, SEEK_CUR);
|
||||
fprintf(coco_fp, "\n]\n");
|
||||
fclose(coco_fp);
|
||||
}
|
||||
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||||
}
|
||||
|
||||
@ -300,8 +376,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
{
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
char **names = get_labels(name_list);
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
char **names = get_labels(name_list);
|
||||
|
||||
image **alphabet = load_alphabet();
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
@ -361,6 +437,29 @@ void run_detector(int argc, char **argv)
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
}
|
||||
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
|
||||
int *gpus = 0;
|
||||
int gpu = 0;
|
||||
int ngpus = 0;
|
||||
if(gpu_list){
|
||||
printf("%s\n", gpu_list);
|
||||
int len = strlen(gpu_list);
|
||||
ngpus = 1;
|
||||
int i;
|
||||
for(i = 0; i < len; ++i){
|
||||
if (gpu_list[i] == ',') ++ngpus;
|
||||
}
|
||||
gpus = calloc(ngpus, sizeof(int));
|
||||
for(i = 0; i < ngpus; ++i){
|
||||
gpus[i] = atoi(gpu_list);
|
||||
gpu_list = strchr(gpu_list, ',')+1;
|
||||
}
|
||||
} else {
|
||||
gpu = gpu_index;
|
||||
gpus = &gpu;
|
||||
ngpus = 1;
|
||||
}
|
||||
|
||||
int clear = find_arg(argc, argv, "-clear");
|
||||
|
||||
char *datacfg = argv[3];
|
||||
@ -368,7 +467,7 @@ void run_detector(int argc, char **argv)
|
||||
char *weights = (argc > 5) ? argv[5] : 0;
|
||||
char *filename = (argc > 6) ? argv[6]: 0;
|
||||
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, clear);
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "demo")) {
|
||||
|
Reference in New Issue
Block a user