mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
🔥 crush. crush. admit. 🔥
This commit is contained in:
203
src/classifier.c
203
src/classifier.c
@ -25,9 +25,8 @@ float *get_regression_values(char **labels, int n)
|
||||
return v;
|
||||
}
|
||||
|
||||
void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
{
|
||||
#ifdef GPU
|
||||
int i;
|
||||
|
||||
float avg_loss = -1;
|
||||
@ -40,7 +39,9 @@ void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int
|
||||
int seed = rand();
|
||||
for(i = 0; i < ngpus; ++i){
|
||||
srand(seed);
|
||||
#ifdef GPU
|
||||
cuda_set_device(gpus[i]);
|
||||
#endif
|
||||
nets[i] = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&nets[i], weightfile);
|
||||
@ -107,7 +108,16 @@ void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
|
||||
float loss = train_networks(nets, ngpus, train, 4);
|
||||
float loss = 0;
|
||||
#ifdef GPU
|
||||
if(ngpus == 1){
|
||||
loss = train_network(net, train);
|
||||
} else {
|
||||
loss = train_networks(nets, ngpus, train, 4);
|
||||
}
|
||||
#else
|
||||
loss = train_network(net, train);
|
||||
#endif
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
@ -133,117 +143,118 @@ void train_classifier_multi(char *datacfg, char *cfgfile, char *weightfile, int
|
||||
free_ptrs((void**)paths, plist->size);
|
||||
free_list(plist);
|
||||
free(base);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
{
|
||||
srand(time(0));
|
||||
float avg_loss = -1;
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
if(clear) *net.seen = 0;
|
||||
/*
|
||||
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
{
|
||||
srand(time(0));
|
||||
float avg_loss = -1;
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
if(clear) *net.seen = 0;
|
||||
|
||||
int imgs = net.batch * net.subdivisions;
|
||||
int imgs = net.batch * net.subdivisions;
|
||||
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
list *options = read_data_cfg(datacfg);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *backup_directory = option_find_str(options, "backup", "/backup/");
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
char *train_list = option_find_str(options, "train", "data/train.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
char *backup_directory = option_find_str(options, "backup", "/backup/");
|
||||
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
||||
char *train_list = option_find_str(options, "train", "data/train.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(train_list);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
printf("%d\n", plist->size);
|
||||
int N = plist->size;
|
||||
clock_t time;
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(train_list);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
printf("%d\n", plist->size);
|
||||
int N = plist->size;
|
||||
clock_t time;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.threads = 8;
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.threads = 8;
|
||||
|
||||
args.min = net.min_crop;
|
||||
args.max = net.max_crop;
|
||||
args.angle = net.angle;
|
||||
args.aspect = net.aspect;
|
||||
args.exposure = net.exposure;
|
||||
args.saturation = net.saturation;
|
||||
args.hue = net.hue;
|
||||
args.size = net.w;
|
||||
args.hierarchy = net.hierarchy;
|
||||
args.min = net.min_crop;
|
||||
args.max = net.max_crop;
|
||||
args.angle = net.angle;
|
||||
args.aspect = net.aspect;
|
||||
args.exposure = net.exposure;
|
||||
args.saturation = net.saturation;
|
||||
args.hue = net.hue;
|
||||
args.size = net.w;
|
||||
args.hierarchy = net.hierarchy;
|
||||
|
||||
args.paths = paths;
|
||||
args.classes = classes;
|
||||
args.n = imgs;
|
||||
args.m = N;
|
||||
args.labels = labels;
|
||||
args.type = CLASSIFICATION_DATA;
|
||||
args.paths = paths;
|
||||
args.classes = classes;
|
||||
args.n = imgs;
|
||||
args.m = N;
|
||||
args.labels = labels;
|
||||
args.type = CLASSIFICATION_DATA;
|
||||
|
||||
data train;
|
||||
data buffer;
|
||||
pthread_t load_thread;
|
||||
args.d = &buffer;
|
||||
load_thread = load_data(args);
|
||||
data train;
|
||||
data buffer;
|
||||
pthread_t load_thread;
|
||||
args.d = &buffer;
|
||||
load_thread = load_data(args);
|
||||
|
||||
int epoch = (*net.seen)/N;
|
||||
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
|
||||
time=clock();
|
||||
int epoch = (*net.seen)/N;
|
||||
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
|
||||
time=clock();
|
||||
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data(args);
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data(args);
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
|
||||
#ifdef OPENCV
|
||||
if(0){
|
||||
int u;
|
||||
for(u = 0; u < imgs; ++u){
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
|
||||
show_image(im, "loaded");
|
||||
cvWaitKey(0);
|
||||
}
|
||||
}
|
||||
if(0){
|
||||
int u;
|
||||
for(u = 0; u < imgs; ++u){
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
|
||||
show_image(im, "loaded");
|
||||
cvWaitKey(0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
float loss = train_network(net, train);
|
||||
free_data(train);
|
||||
float loss = train_network(net, train);
|
||||
free_data(train);
|
||||
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(get_current_batch(net)%100 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
}
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
||||
save_weights(net, buff);
|
||||
|
||||
free_network(net);
|
||||
free_ptrs((void**)labels, classes);
|
||||
free_ptrs((void**)paths, plist->size);
|
||||
free_list(plist);
|
||||
free(base);
|
||||
}
|
||||
if(get_current_batch(net)%100 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
}
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
|
||||
free_network(net);
|
||||
free_ptrs((void**)labels, classes);
|
||||
free_ptrs((void**)paths, plist->size);
|
||||
free_list(plist);
|
||||
free(base);
|
||||
}
|
||||
*/
|
||||
|
||||
void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
|
||||
{
|
||||
@ -1108,6 +1119,7 @@ void run_classifier(int argc, char **argv)
|
||||
|
||||
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
|
||||
int *gpus = 0;
|
||||
int gpu = 0;
|
||||
int ngpus = 0;
|
||||
if(gpu_list){
|
||||
printf("%s\n", gpu_list);
|
||||
@ -1122,6 +1134,10 @@ void run_classifier(int argc, char **argv)
|
||||
gpus[i] = atoi(gpu_list);
|
||||
gpu_list = strchr(gpu_list, ',')+1;
|
||||
}
|
||||
} else {
|
||||
gpu = gpu_index;
|
||||
gpus = &gpu;
|
||||
ngpus = 1;
|
||||
}
|
||||
|
||||
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
||||
@ -1135,8 +1151,7 @@ void run_classifier(int argc, char **argv)
|
||||
int layer = layer_s ? atoi(layer_s) : -1;
|
||||
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
|
||||
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
|
||||
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
|
||||
else if(0==strcmp(argv[2], "trainm")) train_classifier_multi(data, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
|
||||
else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename);
|
||||
else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
|
||||
|
@ -30,20 +30,6 @@ extern void run_go(int argc, char **argv);
|
||||
extern void run_art(int argc, char **argv);
|
||||
extern void run_super(int argc, char **argv);
|
||||
|
||||
void change_rate(char *filename, float scale, float add)
|
||||
{
|
||||
// Ready for some weird shit??
|
||||
FILE *fp = fopen(filename, "r+b");
|
||||
if(!fp) file_error(filename);
|
||||
float rate = 0;
|
||||
fread(&rate, sizeof(float), 1, fp);
|
||||
printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add);
|
||||
rate = rate*scale + add;
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
fwrite(&rate, sizeof(float), 1, fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void average(int argc, char *argv[])
|
||||
{
|
||||
char *cfgfile = argv[2];
|
||||
@ -67,6 +53,11 @@ void average(int argc, char *argv[])
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
|
||||
axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
|
||||
if(l.batch_normalize){
|
||||
axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
|
||||
axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
|
||||
axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
|
||||
}
|
||||
}
|
||||
if(l.type == CONNECTED){
|
||||
axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
|
||||
@ -81,6 +72,11 @@ void average(int argc, char *argv[])
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
scal_cpu(l.n, 1./n, l.biases, 1);
|
||||
scal_cpu(num, 1./n, l.weights, 1);
|
||||
if(l.batch_normalize){
|
||||
scal_cpu(l.n, 1./n, l.scales, 1);
|
||||
scal_cpu(l.n, 1./n, l.rolling_mean, 1);
|
||||
scal_cpu(l.n, 1./n, l.rolling_variance, 1);
|
||||
}
|
||||
}
|
||||
if(l.type == CONNECTED){
|
||||
scal_cpu(l.outputs, 1./n, l.biases, 1);
|
||||
@ -125,6 +121,31 @@ void operations(char *cfgfile)
|
||||
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
|
||||
}
|
||||
|
||||
void oneoff(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
int oldn = net.layers[net.n - 2].n;
|
||||
int c = net.layers[net.n - 2].c;
|
||||
net.layers[net.n - 2].n = 7879;
|
||||
net.layers[net.n - 2].biases += 5;
|
||||
net.layers[net.n - 2].weights += 5*c;
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
net.layers[net.n - 2].biases -= 5;
|
||||
net.layers[net.n - 2].weights -= 5*c;
|
||||
net.layers[net.n - 2].n = oldn;
|
||||
printf("%d\n", oldn);
|
||||
layer l = net.layers[net.n - 2];
|
||||
copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1);
|
||||
copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
|
||||
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1);
|
||||
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
|
||||
*net.seen = 0;
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
||||
{
|
||||
gpu_index = -1;
|
||||
@ -387,8 +408,6 @@ int main(int argc, char **argv)
|
||||
run_captcha(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "nightmare")){
|
||||
run_nightmare(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "change")){
|
||||
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
|
||||
} else if (0 == strcmp(argv[1], "rgbgr")){
|
||||
rgbgr_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "reset")){
|
||||
@ -404,7 +423,9 @@ int main(int argc, char **argv)
|
||||
} else if (0 == strcmp(argv[1], "ops")){
|
||||
operations(argv[2]);
|
||||
} else if (0 == strcmp(argv[1], "speed")){
|
||||
speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0);
|
||||
speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
|
||||
} else if (0 == strcmp(argv[1], "oneoff")){
|
||||
oneoff(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "partial")){
|
||||
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
|
||||
} else if (0 == strcmp(argv[1], "average")){
|
||||
|
165
src/detector.c
165
src/detector.c
@ -10,8 +10,9 @@
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
|
||||
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
{
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *train_images = option_find_str(options, "train", "data/train.list");
|
||||
@ -21,14 +22,28 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
network *nets = calloc(ngpus, sizeof(network));
|
||||
|
||||
srand(time(0));
|
||||
int seed = rand();
|
||||
int i;
|
||||
for(i = 0; i < ngpus; ++i){
|
||||
srand(seed);
|
||||
#ifdef GPU
|
||||
cuda_set_device(gpus[i]);
|
||||
#endif
|
||||
nets[i] = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&nets[i], weightfile);
|
||||
}
|
||||
if(clear) *nets[i].seen = 0;
|
||||
nets[i].learning_rate *= ngpus;
|
||||
}
|
||||
if(clear) *net.seen = 0;
|
||||
srand(time(0));
|
||||
network net = nets[0];
|
||||
|
||||
int imgs = net.batch * net.subdivisions * ngpus;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
int i = *net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
@ -62,37 +77,46 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
clock_t time;
|
||||
//while(i*imgs < N*120){
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data(args);
|
||||
|
||||
/*
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
if(!b.x) break;
|
||||
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
|
||||
}
|
||||
image im = float_to_image(448, 448, 3, train.X.vals[10]);
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
|
||||
draw_bbox(im, b, 8, 1,0,0);
|
||||
}
|
||||
save_image(im, "truth11");
|
||||
*/
|
||||
/*
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
if(!b.x) break;
|
||||
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
|
||||
}
|
||||
image im = float_to_image(448, 448, 3, train.X.vals[10]);
|
||||
int k;
|
||||
for(k = 0; k < l.max_boxes; ++k){
|
||||
box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
||||
printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
|
||||
draw_bbox(im, b, 8, 1,0,0);
|
||||
}
|
||||
save_image(im, "truth11");
|
||||
*/
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
float loss = 0;
|
||||
#ifdef GPU
|
||||
if(ngpus == 1){
|
||||
loss = train_network(net, train);
|
||||
} else {
|
||||
loss = train_networks(nets, ngpus, train, 4);
|
||||
}
|
||||
#else
|
||||
loss = train_network(net, train);
|
||||
#endif
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
i = get_current_batch(net);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
if(i%1000==0 || (i < 1000 && i%100 == 0)){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
@ -105,6 +129,39 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
|
||||
static int get_coco_image_id(char *filename)
|
||||
{
|
||||
char *p = strrchr(filename, '_');
|
||||
return atoi(p+1);
|
||||
}
|
||||
|
||||
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
int image_id = get_coco_image_id(image_path);
|
||||
for(i = 0; i < num_boxes; ++i){
|
||||
float xmin = boxes[i].x - boxes[i].w/2.;
|
||||
float xmax = boxes[i].x + boxes[i].w/2.;
|
||||
float ymin = boxes[i].y - boxes[i].h/2.;
|
||||
float ymax = boxes[i].y + boxes[i].h/2.;
|
||||
|
||||
if (xmin < 0) xmin = 0;
|
||||
if (ymin < 0) ymin = 0;
|
||||
if (xmax > w) xmax = w;
|
||||
if (ymax > h) ymax = h;
|
||||
|
||||
float bx = xmin;
|
||||
float by = ymin;
|
||||
float bw = xmax - xmin;
|
||||
float bh = ymax - ymin;
|
||||
|
||||
for(j = 0; j < classes; ++j){
|
||||
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
@ -131,8 +188,19 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *valid_images = option_find_str(options, "valid", "data/train.list");
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
char *prefix = option_find_str(options, "results", "results");
|
||||
char **names = get_labels(name_list);
|
||||
|
||||
|
||||
char buff[1024];
|
||||
int coco = option_find_int_quiet(options, "coco", 0);
|
||||
FILE *coco_fp = 0;
|
||||
if(coco){
|
||||
snprintf(buff, 1024, "%s/coco_results.json", prefix);
|
||||
coco_fp = fopen(buff, "w");
|
||||
fprintf(coco_fp, "[\n");
|
||||
}
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
@ -141,7 +209,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *base = "results/comp4_det_test_";
|
||||
char *base = "comp4_det_test_";
|
||||
list *plist = get_paths(valid_images);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
@ -151,8 +219,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
int j;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
for(j = 0; j < classes; ++j){
|
||||
char buff[1024];
|
||||
snprintf(buff, 1024, "%s%s.txt", base, names[j]);
|
||||
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
@ -207,7 +274,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
int h = val[t].h;
|
||||
get_region_boxes(l, w, h, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
|
||||
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
if(coco_fp){
|
||||
print_cocos(coco_fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
}else{
|
||||
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
}
|
||||
free(id);
|
||||
free_image(val[t]);
|
||||
free_image(val_resized[t]);
|
||||
@ -216,6 +287,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
for(j = 0; j < classes; ++j){
|
||||
fclose(fps[j]);
|
||||
}
|
||||
if(coco_fp){
|
||||
fseek(coco_fp, -2, SEEK_CUR);
|
||||
fprintf(coco_fp, "\n]\n");
|
||||
fclose(coco_fp);
|
||||
}
|
||||
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||||
}
|
||||
|
||||
@ -300,8 +376,8 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
{
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
char **names = get_labels(name_list);
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
char **names = get_labels(name_list);
|
||||
|
||||
image **alphabet = load_alphabet();
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
@ -361,6 +437,29 @@ void run_detector(int argc, char **argv)
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
}
|
||||
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
|
||||
int *gpus = 0;
|
||||
int gpu = 0;
|
||||
int ngpus = 0;
|
||||
if(gpu_list){
|
||||
printf("%s\n", gpu_list);
|
||||
int len = strlen(gpu_list);
|
||||
ngpus = 1;
|
||||
int i;
|
||||
for(i = 0; i < len; ++i){
|
||||
if (gpu_list[i] == ',') ++ngpus;
|
||||
}
|
||||
gpus = calloc(ngpus, sizeof(int));
|
||||
for(i = 0; i < ngpus; ++i){
|
||||
gpus[i] = atoi(gpu_list);
|
||||
gpu_list = strchr(gpu_list, ',')+1;
|
||||
}
|
||||
} else {
|
||||
gpu = gpu_index;
|
||||
gpus = &gpu;
|
||||
ngpus = 1;
|
||||
}
|
||||
|
||||
int clear = find_arg(argc, argv, "-clear");
|
||||
|
||||
char *datacfg = argv[3];
|
||||
@ -368,7 +467,7 @@ void run_detector(int argc, char **argv)
|
||||
char *weights = (argc > 5) ? argv[5] : 0;
|
||||
char *filename = (argc > 6) ? argv[6]: 0;
|
||||
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, clear);
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "demo")) {
|
||||
|
@ -48,19 +48,18 @@ region_layer make_region_layer(int batch, int w, int h, int n, int classes, int
|
||||
return l;
|
||||
}
|
||||
|
||||
#define LOG 1
|
||||
|
||||
#define DOABS 1
|
||||
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
|
||||
{
|
||||
box b;
|
||||
b.x = (i + .5)/w + x[index + 0] * biases[2*n];
|
||||
b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
|
||||
if(LOG){
|
||||
b.x = (i + logistic_activate(x[index + 0])) / w;
|
||||
b.y = (j + logistic_activate(x[index + 1])) / h;
|
||||
}
|
||||
b.x = (i + logistic_activate(x[index + 0])) / w;
|
||||
b.y = (j + logistic_activate(x[index + 1])) / h;
|
||||
b.w = exp(x[index + 2]) * biases[2*n];
|
||||
b.h = exp(x[index + 3]) * biases[2*n+1];
|
||||
if(DOABS){
|
||||
b.w = exp(x[index + 2]) * biases[2*n] / w;
|
||||
b.h = exp(x[index + 3]) * biases[2*n+1] / h;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
@ -69,21 +68,17 @@ float delta_region_box(box truth, float *x, float *biases, int n, int index, int
|
||||
box pred = get_region_box(x, biases, n, index, i, j, w, h);
|
||||
float iou = box_iou(pred, truth);
|
||||
|
||||
float tx = (truth.x - (i + .5)/w) / biases[2*n];
|
||||
float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
|
||||
if(LOG){
|
||||
tx = (truth.x*w - i);
|
||||
ty = (truth.y*h - j);
|
||||
}
|
||||
float tx = (truth.x*w - i);
|
||||
float ty = (truth.y*h - j);
|
||||
float tw = log(truth.w / biases[2*n]);
|
||||
float th = log(truth.h / biases[2*n + 1]);
|
||||
|
||||
delta[index + 0] = scale * (tx - x[index + 0]);
|
||||
delta[index + 1] = scale * (ty - x[index + 1]);
|
||||
if(LOG){
|
||||
delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
|
||||
delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
|
||||
if(DOABS){
|
||||
tw = log(truth.w*w / biases[2*n]);
|
||||
th = log(truth.h*h / biases[2*n + 1]);
|
||||
}
|
||||
|
||||
delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
|
||||
delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
|
||||
delta[index + 2] = scale * (tw - x[index + 2]);
|
||||
delta[index + 3] = scale * (th - x[index + 3]);
|
||||
return iou;
|
||||
@ -135,9 +130,33 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
for(i = 0; i < l.h*l.w*l.n; ++i){
|
||||
int index = size*i + b*l.outputs;
|
||||
l.output[index + 4] = logistic_activate(l.output[index + 4]);
|
||||
if(l.softmax_tree){
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (l.softmax_tree){
|
||||
#ifdef GPU
|
||||
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
||||
int i;
|
||||
int count = 5;
|
||||
for (i = 0; i < l.softmax_tree->groups; ++i) {
|
||||
int group_size = l.softmax_tree->group_size[i];
|
||||
softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
|
||||
count += group_size;
|
||||
}
|
||||
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
|
||||
#else
|
||||
for (b = 0; b < l.batch; ++b){
|
||||
for(i = 0; i < l.h*l.w*l.n; ++i){
|
||||
int index = size*i + b*l.outputs;
|
||||
softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
|
||||
} else if(l.softmax){
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else if (l.softmax){
|
||||
for (b = 0; b < l.batch; ++b){
|
||||
for(i = 0; i < l.h*l.w*l.n; ++i){
|
||||
int index = size*i + b*l.outputs;
|
||||
softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
|
||||
}
|
||||
}
|
||||
@ -188,11 +207,11 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
truth.y = (j + .5)/l.h;
|
||||
truth.w = l.biases[2*n];
|
||||
truth.h = l.biases[2*n+1];
|
||||
if(DOABS){
|
||||
truth.w = l.biases[2*n]/l.w;
|
||||
truth.h = l.biases[2*n+1]/l.h;
|
||||
}
|
||||
delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
|
||||
//l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
|
||||
//l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
|
||||
//l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
|
||||
//l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -217,6 +236,10 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
if(l.bias_match){
|
||||
pred.w = l.biases[2*n];
|
||||
pred.h = l.biases[2*n+1];
|
||||
if(DOABS){
|
||||
pred.w = l.biases[2*n]/l.w;
|
||||
pred.h = l.biases[2*n+1]/l.h;
|
||||
}
|
||||
}
|
||||
//printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
|
||||
pred.x = 0;
|
||||
|
Reference in New Issue
Block a user