using caffe's im2col, it's so much better\!

This commit is contained in:
Joseph Redmon 2015-03-21 14:17:39 -07:00
parent 4af116e996
commit 9d418102f4
5 changed files with 234 additions and 131 deletions

View File

@ -8,7 +8,7 @@ OBJDIR=./obj/
CC=gcc
NVCC=nvcc
OPTS=-O0
OPTS=-O3
LDFLAGS=`pkg-config --libs opencv` -lm -pthread -lstdc++
COMMON=`pkg-config --cflags opencv` -I/usr/local/cuda/include/
CFLAGS=-Wall -Wfatal-errors

View File

@ -3,6 +3,57 @@ extern "C" {
#include "cuda.h"
}
// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
__global__ void col2im_gpu_kernel(const int n, const float* data_col,
const int height, const int width, const int ksize,
const int pad,
const int stride,
const int height_col, const int width_col,
float *data_im) {
int index = blockIdx.x*blockDim.x+threadIdx.x;
for(; index < n; index += blockDim.x*gridDim.x){
float val = 0;
int w = index % width + pad;
int h = (index / width) % height + pad;
int c = index / (width * height);
// compute the start and end of the output
int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1;
int w_col_end = min(w / stride + 1, width_col);
int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1;
int h_col_end = min(h / stride + 1, height_col);
// equivalent implementation
int offset =
(c * ksize * ksize + h * ksize + w) * height_col * width_col;
int coeff_h_col = (1 - stride * ksize * height_col) * width_col;
int coeff_w_col = (1 - stride * height_col * width_col);
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col];
}
}
data_im[index] = val;
}
}
void col2im_ongpu(float *im,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_col){
// We are going to launch channels * height_col * width_col kernels, each
// kernel responsible for copying a single-channel grid.
pad = pad ? ksize/2 : 0;
int height_col = (height + 2 * pad - ksize) / stride + 1;
int width_col = (width + 2 * pad - ksize) / stride + 1;
int num_kernels = channels * height * width;
col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
BLOCK>>>(
num_kernels, data_col, height, width, ksize, pad,
stride, height_col,
width_col, im);
}
/*
__global__ void col2im_kernel(float *data_col,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_im)
@ -60,3 +111,4 @@ extern "C" void col2im_ongpu(float *data_col,
col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, channels, height, width, ksize, stride, pad, data_im);
check_error(cudaPeekAtLastError());
}
*/

View File

@ -56,7 +56,7 @@ extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch,
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
{
clock_t time = clock();
//clock_t time = clock();
int i;
int m = layer.n;
int k = layer.size*layer.size*layer.c;
@ -64,31 +64,31 @@ clock_t time = clock();
convolutional_out_width(layer);
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
cudaDeviceSynchronize();
printf("bias %f\n", sec(clock() - time));
time = clock();
//cudaDeviceSynchronize();
//printf("bias %f\n", sec(clock() - time));
//time = clock();
float imt=0;
float gemt = 0;
//float imt=0;
//float gemt = 0;
for(i = 0; i < layer.batch; ++i){
time = clock();
//time = clock();
im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
cudaDeviceSynchronize();
imt += sec(clock()-time);
time = clock();
//cudaDeviceSynchronize();
//imt += sec(clock()-time);
//time = clock();
float * a = layer.filters_gpu;
float * b = layer.col_image_gpu;
float * c = layer.output_gpu;
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
cudaDeviceSynchronize();
gemt += sec(clock()-time);
time = clock();
//cudaDeviceSynchronize();
//gemt += sec(clock()-time);
//time = clock();
}
activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
cudaDeviceSynchronize();
printf("activate %f\n", sec(clock() - time));
printf("im2col %f\n", imt);
printf("gemm %f\n", gemt);
//cudaDeviceSynchronize();
//printf("activate %f\n", sec(clock() - time));
//printf("im2col %f\n", imt);
//printf("gemm %f\n", gemt);
}
extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)

View File

@ -3,6 +3,56 @@ extern "C" {
#include "cuda.h"
}
// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
__global__ void im2col_gpu_kernel(const int n, const float* data_im,
const int height, const int width, const int ksize,
const int pad,
const int stride,
const int height_col, const int width_col,
float *data_col) {
int index = blockIdx.x*blockDim.x+threadIdx.x;
for(; index < n; index += blockDim.x*gridDim.x){
int w_out = index % width_col;
int h_index = index / width_col;
int h_out = h_index % height_col;
int channel_in = h_index / height_col;
int channel_out = channel_in * ksize * ksize;
int h_in = h_out * stride - pad;
int w_in = w_out * stride - pad;
float* data_col_ptr = data_col;
data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out;
const float* data_im_ptr = data_im;
data_im_ptr += (channel_in * height + h_in) * width + w_in;
for (int i = 0; i < ksize; ++i) {
for (int j = 0; j < ksize; ++j) {
int h = h_in + i;
int w = w_in + j;
*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
data_im_ptr[i * width + j] : 0;
data_col_ptr += height_col * width_col;
}
}
}
}
void im2col_ongpu(float *im,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_col){
// We are going to launch channels * height_col * width_col kernels, each
// kernel responsible for copying a single-channel grid.
pad = pad ? ksize/2 : 0;
int height_col = (height + 2 * pad - ksize) / stride + 1;
int width_col = (width + 2 * pad - ksize) / stride + 1;
int num_kernels = channels * height_col * width_col;
im2col_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
BLOCK>>>(
num_kernels, im, height, width, ksize, pad,
stride, height_col,
width_col, data_col);
}
/*
__global__ void im2col_pad_kernel(float *im,
int channels, int height, int width,
int ksize, int stride, float *data_col)
@ -91,3 +141,4 @@ extern "C" void im2col_ongpu(float *im,
else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
check_error(cudaPeekAtLastError());
}
*/

View File

@ -13,7 +13,7 @@ void train_imagenet(char *cfgfile, char *weightfile)
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
int imgs = 1024;
int i = net.seen/imgs;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");