mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
changing data loading
This commit is contained in:
91
src/coco.c
91
src/coco.c
@ -15,41 +15,32 @@ char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","
|
||||
|
||||
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
|
||||
void draw_coco(image im, float *box, int side, int objectness, char *label)
|
||||
void draw_coco(image im, float *pred, int side, char *label)
|
||||
{
|
||||
int classes = 80;
|
||||
int elems = 4+classes+objectness;
|
||||
int classes = 81;
|
||||
int elems = 4+classes;
|
||||
int j;
|
||||
int r, c;
|
||||
|
||||
for(r = 0; r < side; ++r){
|
||||
for(c = 0; c < side; ++c){
|
||||
j = (r*side + c) * elems;
|
||||
float scale = 1;
|
||||
if(objectness) scale = 1 - box[j++];
|
||||
int class = max_index(box+j, classes);
|
||||
if(scale * box[j+class] > 0.2){
|
||||
int width = box[j+class]*5 + 1;
|
||||
printf("%f %s\n", scale * box[j+class], coco_classes[class]);
|
||||
int class = max_index(pred+j, classes);
|
||||
if (class == 0) continue;
|
||||
if (pred[j+class] > 0.2){
|
||||
int width = pred[j+class]*5 + 1;
|
||||
printf("%f %s\n", pred[j+class], coco_classes[class-1]);
|
||||
float red = get_color(0,class,classes);
|
||||
float green = get_color(1,class,classes);
|
||||
float blue = get_color(2,class,classes);
|
||||
|
||||
j += classes;
|
||||
float x = box[j+0];
|
||||
float y = box[j+1];
|
||||
x = (x+c)/side;
|
||||
y = (y+r)/side;
|
||||
float w = box[j+2]; //*maxwidth;
|
||||
float h = box[j+3]; //*maxheight;
|
||||
h = h*h;
|
||||
w = w*w;
|
||||
|
||||
int left = (x-w/2)*im.w;
|
||||
int right = (x+w/2)*im.w;
|
||||
int top = (y-h/2)*im.h;
|
||||
int bot = (y+h/2)*im.h;
|
||||
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
||||
box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
|
||||
box anchor = {(c+.5)/side, (r+.5)/side, .5, .5};
|
||||
box decode = decode_box(predict, anchor);
|
||||
|
||||
draw_bbox(im, decode, width, red, green, blue);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -69,39 +60,47 @@ void train_coco(char *cfgfile, char *weightfile)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 128;
|
||||
int i = net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
int classes = layer.classes;
|
||||
int background = layer.objectness;
|
||||
int side = sqrt(get_detection_layer_locations(layer));
|
||||
int classes = 81;
|
||||
int side = 7;
|
||||
|
||||
char **paths;
|
||||
list *plist = get_paths(train_images);
|
||||
int N = plist->size;
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
paths = (char **)list_to_array(plist);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.paths = paths;
|
||||
args.n = imgs;
|
||||
args.m = plist->size;
|
||||
args.classes = classes;
|
||||
args.num_boxes = side;
|
||||
args.d = &buffer;
|
||||
args.type = REGION_DATA;
|
||||
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
clock_t time;
|
||||
while(i*imgs < N*120){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
load_thread = load_data_in_thread(args);
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
||||
/*
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||||
image copy = copy_image(im);
|
||||
draw_coco(copy, train.y.vals[114], 7, layer.objectness, "truth");
|
||||
cvWaitKey(0);
|
||||
free_image(copy);
|
||||
*/
|
||||
/*
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||||
image copy = copy_image(im);
|
||||
draw_coco(copy, train.y.vals[114], 7, "truth");
|
||||
cvWaitKey(0);
|
||||
free_image(copy);
|
||||
*/
|
||||
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
@ -220,6 +219,11 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
int nms = 1;
|
||||
float iou_thresh = .5;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.type = IMAGE_DATA;
|
||||
|
||||
int nthreads = 8;
|
||||
image *val = calloc(nthreads, sizeof(image));
|
||||
image *val_resized = calloc(nthreads, sizeof(image));
|
||||
@ -227,7 +231,10 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
image *buf_resized = calloc(nthreads, sizeof(image));
|
||||
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
||||
for(t = 0; t < nthreads; ++t){
|
||||
thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
|
||||
args.path = paths[i+t];
|
||||
args.im = &buf[t];
|
||||
args.resized = &buf_resized[t];
|
||||
thr[t] = load_data_in_thread(args);
|
||||
}
|
||||
time_t start = time(0);
|
||||
for(i = nthreads; i < m+nthreads; i += nthreads){
|
||||
@ -238,7 +245,10 @@ void validate_coco(char *cfgfile, char *weightfile)
|
||||
val_resized[t] = buf_resized[t];
|
||||
}
|
||||
for(t = 0; t < nthreads && i+t < m; ++t){
|
||||
thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
|
||||
args.path = paths[i+t];
|
||||
args.im = &buf[t];
|
||||
args.resized = &buf_resized[t];
|
||||
thr[t] = load_data_in_thread(args);
|
||||
}
|
||||
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
||||
char *path = paths[i+t-nthreads];
|
||||
@ -267,7 +277,6 @@ void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
@ -287,7 +296,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
draw_coco(im, predictions, 7, layer.objectness, "predictions");
|
||||
draw_coco(im, predictions, 7, "predictions");
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
#ifdef OPENCV
|
||||
|
Reference in New Issue
Block a user