changes to detection

This commit is contained in:
Joseph Redmon 2015-07-20 14:56:53 -07:00
parent 43552b6d20
commit 9db618329a
11 changed files with 38 additions and 48 deletions

View File

@ -1,5 +1,5 @@
GPU=1 GPU=0
OPENCV=1 OPENCV=0
DEBUG=0 DEBUG=0
ARCH= -arch=sm_52 ARCH= -arch=sm_52

View File

@ -7,7 +7,6 @@ channels=3
learning_rate=0.01 learning_rate=0.01
momentum=0.9 momentum=0.9
decay=0.0005 decay=0.0005
seen=0
[crop] [crop]
crop_height=224 crop_height=224

View File

@ -7,7 +7,6 @@ channels=3
learning_rate=0.01 learning_rate=0.01
momentum=0.9 momentum=0.9
decay=0.0005 decay=0.0005
seen=0
[convolutional] [convolutional]
filters=32 filters=32

View File

@ -7,7 +7,6 @@ channels=3
learning_rate=0.01 learning_rate=0.01
momentum=0.9 momentum=0.9
decay=0.0005 decay=0.0005
seen=0
[crop] [crop]
crop_height=224 crop_height=224

View File

@ -6,7 +6,6 @@ width=256
channels=3 channels=3
learning_rate=0.00001 learning_rate=0.00001
momentum=0.9 momentum=0.9
seen=0
decay=0.0005 decay=0.0005
[crop] [crop]

View File

@ -6,7 +6,6 @@ height=224
channels=3 channels=3
learning_rate=0.00001 learning_rate=0.00001
momentum=0.9 momentum=0.9
seen=0
decay=0.0005 decay=0.0005
[convolutional] [convolutional]

View File

@ -7,7 +7,6 @@ channels=3
learning_rate=0.01 learning_rate=0.01
momentum=0.9 momentum=0.9
decay=0.0005 decay=0.0005
seen = 0
[crop] [crop]
crop_width=448 crop_width=448

View File

@ -7,7 +7,6 @@ channels=3
learning_rate=0.01 learning_rate=0.01
momentum=0.9 momentum=0.9
decay=0.0005 decay=0.0005
seen = 0
[crop] [crop]
crop_width=448 crop_width=448
@ -200,6 +199,6 @@ activation=logistic
classes=20 classes=20
coords=4 coords=4
rescore=0 rescore=0
joint=1 joint=0
objectness = 0 objectness=1
background=0

View File

@ -140,7 +140,7 @@ void randomize_boxes(box_label *b, int n)
void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy) void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
{ {
char *labelpath = find_replace(path, "detection_images", "labels"); char *labelpath = find_replace(path, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt"); labelpath = find_replace(labelpath, ".JPEG", ".txt");
int count = 0; int count = 0;

View File

@ -8,20 +8,22 @@
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
void draw_detection(image im, float *box, int side, char *label) void draw_detection(image im, float *box, int side, int objectness, char *label)
{ {
int classes = 20; int classes = 20;
int elems = 4+classes; int elems = 4+classes+objectness;
int j; int j;
int r, c; int r, c;
for(r = 0; r < side; ++r){ for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){ for(c = 0; c < side; ++c){
j = (r*side + c) * elems; j = (r*side + c) * elems;
float scale = 1;
if(objectness) scale = 1 - box[j++];
int class = max_index(box+j, classes); int class = max_index(box+j, classes);
if(box[j+class] > 0.2){ if(scale * box[j+class] > 0.2){
int width = box[j+class]*5 + 1; int width = box[j+class]*5 + 1;
printf("%f %s\n", box[j+class], class_names[class]); printf("%f %s\n", scale * box[j+class], class_names[class]);
float red = get_color(0,class,classes); float red = get_color(0,class,classes);
float green = get_color(1,class,classes); float green = get_color(1,class,classes);
float blue = get_color(2,class,classes); float blue = get_color(2,class,classes);
@ -51,7 +53,6 @@ void train_detection(char *cfgfile, char *weightfile)
{ {
srand(time(0)); srand(time(0));
data_seed = time(0); data_seed = time(0);
int imgnet = 0;
char *base = basecfg(cfgfile); char *base = basecfg(cfgfile);
printf("%s\n", base); printf("%s\n", base);
float avg_loss = -1; float avg_loss = -1;
@ -66,49 +67,45 @@ void train_detection(char *cfgfile, char *weightfile)
data train, buffer; data train, buffer;
int classes = layer.classes; int classes = layer.classes;
int background = (layer.background || layer.objectness); int background = layer.objectness;
printf("%d\n", background);
int side = sqrt(get_detection_layer_locations(layer)); int side = sqrt(get_detection_layer_locations(layer));
char **paths; char **paths;
list *plist; list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt");
if (imgnet){ int N = plist->size;
plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
}else{
//plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
//plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
//plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
//plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
//plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
}
paths = (char **)list_to_array(plist); paths = (char **)list_to_array(plist);
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
clock_t time; clock_t time;
while(1){ while(i*imgs < N*120){
i += 1; i += 1;
time=clock(); time=clock();
pthread_join(load_thread, 0); pthread_join(load_thread, 0);
train = buffer; train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
/*
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
image copy = copy_image(im);
draw_detection(copy, train.y.vals[114], 7, "truth");
cvWaitKey(0);
free_image(copy);
*/
printf("Loaded: %lf seconds\n", sec(clock()-time)); printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock(); time=clock();
float loss = train_network(net, train); float loss = train_network(net, train);
net.seen += imgs; net.seen += imgs;
if (avg_loss < 0) avg_loss = loss; if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1; avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i == 100){ if((i-1)*imgs <= N && i*imgs > N){
fprintf(stderr, "Starting second stage...\n");
net.learning_rate *= 10; net.learning_rate *= 10;
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base);
save_weights(net, buff);
}
if((i-1)*imgs <= 80*N && i*imgs > N*80){
fprintf(stderr, "Second stage done.\n");
net.learning_rate *= .1;
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base);
save_weights(net, buff);
return;
} }
if(i%1000==0){ if(i%1000==0){
char buff[256]; char buff[256];
@ -117,6 +114,9 @@ void train_detection(char *cfgfile, char *weightfile)
} }
free_data(train); free_data(train);
} }
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base);
save_weights(net, buff);
} }
void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
@ -174,7 +174,7 @@ void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_b
if (ymin < 0) ymin = 0; if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w; if (xmax > w) xmax = w;
if (ymax > h) ymax = h; if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){ for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
xmin, ymin, xmax, ymax); xmin, ymin, xmax, ymax);
@ -267,8 +267,6 @@ void test_detection(char *cfgfile, char *weightfile, char *filename)
load_weights(&net, weightfile); load_weights(&net, weightfile);
} }
detection_layer layer = get_network_detection_layer(net); detection_layer layer = get_network_detection_layer(net);
if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
int im_size = 448;
set_batch_network(&net, 1); set_batch_network(&net, 1);
srand(2222222); srand(2222222);
clock_t time; clock_t time;
@ -283,12 +281,12 @@ void test_detection(char *cfgfile, char *weightfile, char *filename)
strtok(input, "\n"); strtok(input, "\n");
} }
image im = load_image_color(input,0,0); image im = load_image_color(input,0,0);
image sized = resize_image(im, im_size, im_size); image sized = resize_image(im, net.w, net.h);
float *X = sized.data; float *X = sized.data;
time=clock(); time=clock();
float *predictions = network_predict(net, X); float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
draw_detection(im, predictions, 7, "predictions"); draw_detection(im, predictions, 7, layer.objectness, "predictions");
free_image(im); free_image(im);
free_image(sized); free_image(sized);
#ifdef OPENCV #ifdef OPENCV

View File

@ -167,7 +167,7 @@ detection_layer parse_detection(list *options, size_params params)
int rescore = option_find_int(options, "rescore", 0); int rescore = option_find_int(options, "rescore", 0);
int joint = option_find_int(options, "joint", 0); int joint = option_find_int(options, "joint", 0);
int objectness = option_find_int(options, "objectness", 0); int objectness = option_find_int(options, "objectness", 0);
int background = option_find_int(options, "background", 0); int background = 0;
detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
return layer; return layer;
} }
@ -295,7 +295,6 @@ void parse_net_options(list *options, network *net)
net->learning_rate = option_find_float(options, "learning_rate", .001); net->learning_rate = option_find_float(options, "learning_rate", .001);
net->momentum = option_find_float(options, "momentum", .9); net->momentum = option_find_float(options, "momentum", .9);
net->decay = option_find_float(options, "decay", .0001); net->decay = option_find_float(options, "decay", .0001);
net->seen = option_find_int(options, "seen",0);
int subdivs = option_find_int(options, "subdivisions",1); int subdivs = option_find_int(options, "subdivisions",1);
net->batch /= subdivs; net->batch /= subdivs;
net->subdivisions = subdivs; net->subdivisions = subdivs;