NIGHTMARE!!!!

This commit is contained in:
Joseph Redmon 2015-07-08 00:36:43 -07:00
parent d1d56a2a72
commit a08ef29e08
24 changed files with 456 additions and 96 deletions

View File

@ -34,7 +34,7 @@ CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o
ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif
@ -58,7 +58,6 @@ obj:
results:
mkdir -p results
.PHONY: clean
clean:

View File

@ -13,9 +13,9 @@ seen=0
crop_height=224
crop_width=224
flip=1
angle=15
saturation=1.5
exposure=1.5
angle=0
saturation=1
exposure=1
[convolutional]
filters=64

View File

@ -13,9 +13,9 @@ decay=0.0005
crop_height=224
crop_width=224
flip=1
exposure=2
saturation=2
angle=5
exposure=1
saturation=1
angle=0
[convolutional]
filters=64

122
cfg/vgg-conv.cfg Normal file
View File

@ -0,0 +1,122 @@
[net]
batch=1
subdivisions=1
width=224
height=224
channels=3
learning_rate=0.00001
momentum=0.9
seen=0
decay=0.0005
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=64
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=128
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=256
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[convolutional]
filters=512
size=3
stride=1
pad=1
activation=relu
[maxpool]
size=2
stride=2

BIN
data/scream.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 329 KiB

View File

@ -8,6 +8,7 @@ __device__ float logistic_activate_kernel(float x){return 1./(1. + exp(-x));}
__device__ float relu_activate_kernel(float x){return x*(x>0);}
__device__ float relie_activate_kernel(float x){return x*(x>0);}
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;}
__device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
__device__ float plse_activate_kernel(float x)
{
@ -21,6 +22,7 @@ __device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
__device__ float relu_gradient_kernel(float x){return (x>0);}
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01;}
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1;}
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1;}
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01 : .125;}
@ -37,6 +39,8 @@ __device__ float activate_kernel(float x, ACTIVATION a)
return relie_activate_kernel(x);
case RAMP:
return ramp_activate_kernel(x);
case LEAKY:
return leaky_activate_kernel(x);
case TANH:
return tanh_activate_kernel(x);
case PLSE:
@ -58,6 +62,8 @@ __device__ float gradient_kernel(float x, ACTIVATION a)
return relie_gradient_kernel(x);
case RAMP:
return ramp_gradient_kernel(x);
case LEAKY:
return leaky_gradient_kernel(x);
case TANH:
return tanh_gradient_kernel(x);
case PLSE:

View File

@ -22,6 +22,8 @@ char *get_activation_string(ACTIVATION a)
return "tanh";
case PLSE:
return "plse";
case LEAKY:
return "leaky";
default:
break;
}
@ -36,6 +38,7 @@ ACTIVATION get_activation(char *s)
if (strcmp(s, "plse")==0) return PLSE;
if (strcmp(s, "linear")==0) return LINEAR;
if (strcmp(s, "ramp")==0) return RAMP;
if (strcmp(s, "leaky")==0) return LEAKY;
if (strcmp(s, "tanh")==0) return TANH;
fprintf(stderr, "Couldn't find activation function %s, going with ReLU\n", s);
return RELU;
@ -54,6 +57,8 @@ float activate(float x, ACTIVATION a)
return relie_activate(x);
case RAMP:
return ramp_activate(x);
case LEAKY:
return leaky_activate(x);
case TANH:
return tanh_activate(x);
case PLSE:
@ -83,6 +88,8 @@ float gradient(float x, ACTIVATION a)
return relie_gradient(x);
case RAMP:
return ramp_gradient(x);
case LEAKY:
return leaky_gradient(x);
case TANH:
return tanh_gradient(x);
case PLSE:

View File

@ -4,7 +4,7 @@
#include "math.h"
typedef enum{
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY
}ACTIVATION;
ACTIVATION get_activation(char *s);
@ -24,6 +24,7 @@ static inline float logistic_activate(float x){return 1./(1. + exp(-x));}
static inline float relu_activate(float x){return x*(x>0);}
static inline float relie_activate(float x){return x*(x>0);}
static inline float ramp_activate(float x){return x*(x>0)+.1*x;}
static inline float leaky_activate(float x){return (x>0) ? x : .1*x;}
static inline float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
static inline float plse_activate(float x)
{
@ -37,6 +38,7 @@ static inline float logistic_gradient(float x){return (1-x)*x;}
static inline float relu_gradient(float x){return (x>0);}
static inline float relie_gradient(float x){return (x>0) ? 1 : .01;}
static inline float ramp_gradient(float x){return (x>0)+.1;}
static inline float leaky_gradient(float x){return (x>0) ? 1 : .1;}
static inline float tanh_gradient(float x){return 1-x*x;}
static inline float plse_gradient(float x){return (x < 0 || x > 1) ? .01 : .125;}

View File

@ -97,12 +97,18 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
return l;
}
void resize_convolutional_layer(convolutional_layer *l, int h, int w)
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
l->h = h;
l->w = w;
int out_h = convolutional_out_height(*l);
l->h = h;
int out_w = convolutional_out_width(*l);
int out_h = convolutional_out_height(*l);
l->out_w = out_w;
l->out_h = out_h;
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->w * l->h * l->c;
l->col_image = realloc(l->col_image,
out_h*out_w*l->size*l->size*l->c*sizeof(float));
@ -116,9 +122,9 @@ void resize_convolutional_layer(convolutional_layer *l, int h, int w)
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
l->col_image_gpu = cuda_make_array(0, out_h*out_w*l->size*l->size*l->c);
l->delta_gpu = cuda_make_array(0, l->batch*out_h*out_w*l->n);
l->output_gpu = cuda_make_array(0, l->batch*out_h*out_w*l->n);
#endif
}

View File

@ -22,7 +22,7 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
#endif
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);

View File

@ -13,41 +13,7 @@ extern void run_imagenet(int argc, char **argv);
extern void run_detection(int argc, char **argv);
extern void run_writing(int argc, char **argv);
extern void run_captcha(int argc, char **argv);
void del_arg(int argc, char **argv, int index)
{
int i;
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
argv[i] = 0;
}
int find_arg(int argc, char* argv[], char *arg)
{
int i;
for(i = 0; i < argc; ++i) {
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)) {
del_arg(argc, argv, i);
return 1;
}
}
return 0;
}
int find_int_arg(int argc, char **argv, char *arg, int def)
{
int i;
for(i = 0; i < argc-1; ++i){
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)){
def = atoi(argv[i+1]);
del_arg(argc, argv, i);
del_arg(argc, argv, i);
break;
}
}
return def;
}
extern void run_nightmare(int argc, char **argv);
void change_rate(char *filename, float scale, float add)
{
@ -135,6 +101,8 @@ int main(int argc, char **argv)
test_resize(argv[2]);
} else if (0 == strcmp(argv[1], "captcha")){
run_captcha(argc, argv);
} else if (0 == strcmp(argv[1], "nightmare")){
run_nightmare(argc, argv);
} else if (0 == strcmp(argv[1], "change")){
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
} else if (0 == strcmp(argv[1], "rgbgr")){

View File

@ -187,6 +187,7 @@ void show_image_cv(image p, char *name)
{
int x,y,k;
image copy = copy_image(p);
constrain_image(copy);
rgbgr_image(copy);
//normalize_image(copy);
@ -207,7 +208,8 @@ void show_image_cv(image p, char *name)
}
}
free_image(copy);
if(disp->height < 448 || disp->width < 448 || disp->height > 1000){
if(0){
//if(disp->height < 448 || disp->width < 448 || disp->height > 1000){
int w = 448;
int h = w*p.h/p.w;
if(h > 1000){

View File

@ -37,6 +37,8 @@ void exposure_image(image im, float sat);
void saturate_exposure_image(image im, float sat, float exposure);
void hsv_to_rgb(image im);
void rgbgr_image(image im);
void constrain_image(image im);
image grayscale_image(image im);
image collapse_image_layers(image source, int border);
image collapse_images_horz(image *ims, int n);

View File

@ -48,7 +48,6 @@ void train_imagenet(char *cfgfile, char *weightfile)
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if((i % 30000) == 0) net.learning_rate *= .1;
//if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97;
if(i%1000==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);

View File

@ -48,6 +48,8 @@ typedef struct {
int does_cost;
int joint;
int dontload;
float probability;
float scale;
int *indexes;

View File

@ -4,16 +4,16 @@
image get_maxpool_image(maxpool_layer l)
{
int h = (l.h-1)/l.stride + 1;
int w = (l.w-1)/l.stride + 1;
int h = l.out_h;
int w = l.out_w;
int c = l.c;
return float_to_image(w,h,c,l.output);
}
image get_maxpool_delta(maxpool_layer l)
{
int h = (l.h-1)/l.stride + 1;
int w = (l.w-1)/l.stride + 1;
int h = l.out_h;
int w = l.out_w;
int c = l.c;
return float_to_image(w,h,c,l.delta);
}
@ -27,11 +27,11 @@ maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int s
l.h = h;
l.w = w;
l.c = c;
l.out_h = (h-1)/stride + 1;
l.out_w = (w-1)/stride + 1;
l.out_h = (h-1)/stride + 1;
l.out_c = c;
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.outputs;
l.inputs = h*w*c;
l.size = size;
l.stride = stride;
int output_size = l.out_h * l.out_w * l.out_c * batch;
@ -46,11 +46,18 @@ maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int s
return l;
}
void resize_maxpool_layer(maxpool_layer *l, int h, int w)
void resize_maxpool_layer(maxpool_layer *l, int w, int h)
{
int stride = l->stride;
l->h = h;
l->w = w;
int output_size = ((h-1)/l->stride+1) * ((w-1)/l->stride+1) * l->c * l->batch;
l->out_w = (w-1)/stride + 1;
l->out_h = (h-1)/stride + 1;
l->outputs = l->out_w * l->out_h * l->c;
int output_size = l->outputs * l->batch;
l->indexes = realloc(l->indexes, output_size * sizeof(int));
l->output = realloc(l->output, output_size * sizeof(float));
l->delta = realloc(l->delta, output_size * sizeof(float));
@ -59,8 +66,8 @@ void resize_maxpool_layer(maxpool_layer *l, int h, int w)
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->indexes_gpu = cuda_make_int_array(output_size);
l->output_gpu = cuda_make_array(l->output, output_size);
l->delta_gpu = cuda_make_array(l->delta, output_size);
l->output_gpu = cuda_make_array(0, output_size);
l->delta_gpu = cuda_make_array(0, output_size);
#endif
}

View File

@ -10,7 +10,7 @@ typedef layer maxpool_layer;
image get_maxpool_image(maxpool_layer l);
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
void resize_maxpool_layer(maxpool_layer *l, int h, int w);
void resize_maxpool_layer(maxpool_layer *l, int w, int h);
void forward_maxpool_layer(const maxpool_layer l, network_state state);
void backward_maxpool_layer(const maxpool_layer l, network_state state);

View File

@ -132,10 +132,11 @@ void backward_network(network net, network_state state)
{
int i;
float *original_input = state.input;
float *original_delta = state.delta;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
state.input = original_input;
state.delta = 0;
state.delta = original_delta;
}else{
layer prev = net.layers[i-1];
state.input = prev.output;
@ -171,6 +172,7 @@ float train_network_datum(network net, float *x, float *y)
#endif
network_state state;
state.input = x;
state.delta = 0;
state.truth = y;
state.train = 1;
forward_network(net, state);
@ -224,6 +226,7 @@ float train_network_batch(network net, data d, int n)
int i,j;
network_state state;
state.train = 1;
state.delta = 0;
float sum = 0;
int batch = 2;
for(i = 0; i < n; ++i){
@ -249,43 +252,30 @@ void set_batch_network(network *net, int b)
}
}
/*
int resize_network(network net, int h, int w, int c)
int resize_network(network *net, int w, int h)
{
fprintf(stderr, "Might be broken, careful!!");
int i;
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
resize_convolutional_layer(layer, h, w);
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
} else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
resize_deconvolutional_layer(layer, h, w);
image output = get_deconvolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}else if(net.types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
resize_maxpool_layer(layer, h, w);
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}else if(net.types[i] == DROPOUT){
dropout_layer *layer = (dropout_layer *)net.layers[i];
resize_dropout_layer(layer, h*w*c);
//if(w == net->w && h == net->h) return 0;
net->w = w;
net->h = h;
//fprintf(stderr, "Resizing to %d x %d...", w, h);
//fflush(stderr);
for (i = 0; i < net->n; ++i){
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
}else if(l.type == MAXPOOL){
resize_maxpool_layer(&l, w, h);
}else{
error("Cannot resize this type of layer");
}
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
}
//fprintf(stderr, " Done!\n");
return 0;
}
*/
int get_network_output_size(network net)
{

View File

@ -34,6 +34,8 @@ float *network_predict_gpu(network net, float *input);
float * get_network_output_gpu_layer(network net, int i);
float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net);
void forward_network_gpu(network net, network_state state);
void backward_network_gpu(network net, network_state state);
#endif
void compare_networks(network n1, network n2, data d);
@ -65,7 +67,7 @@ image get_network_image_layer(network net, int i);
int get_predicted_class_network(network net);
void print_network(network net);
void visualize_network(network net);
int resize_network(network net, int h, int w, int c);
int resize_network(network *net, int w, int h);
void set_batch_network(network *net, int b);
int get_network_input_size(network net);
float get_network_cost(network net);

View File

@ -59,11 +59,12 @@ void backward_network_gpu(network net, network_state state)
{
int i;
float * original_input = state.input;
float * original_delta = state.delta;
for(i = net.n-1; i >= 0; --i){
layer l = net.layers[i];
if(i == 0){
state.input = original_input;
state.delta = 0;
state.delta = original_delta;
}else{
layer prev = net.layers[i-1];
state.input = prev.output_gpu;
@ -120,6 +121,7 @@ float train_network_datum_gpu(network net, float *x, float *y)
cuda_push_array(*net.truth_gpu, y, y_size);
}
state.input = *net.input_gpu;
state.delta = 0;
state.truth = *net.truth_gpu;
state.train = 1;
forward_network_gpu(net, state);

189
src/nightmare.c Normal file
View File

@ -0,0 +1,189 @@
#include "network.h"
#include "parser.h"
#include "blas.h"
#include "utils.h"
float abs_mean(float *x, int n)
{
int i;
float sum = 0;
for (i = 0; i < n; ++i){
sum += abs(x[i]);
}
return sum/n;
}
void calculate_loss(float *output, float *delta, int n, float thresh)
{
int i;
float mean = mean_array(output, n);
float var = variance_array(output, n);
for(i = 0; i < n; ++i){
if(delta[i] > mean + thresh*sqrt(var)) delta[i] = output[i];
else delta[i] = 0;
}
}
void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh)
{
scale_image(orig, 2);
translate_image(orig, -1);
net->n = max_layer + 1;
int dx = rand()%16 - 8;
int dy = rand()%16 - 8;
int flip = rand()%2;
image crop = crop_image(orig, dx, dy, orig.w, orig.h);
image im = resize_image(crop, (int)(orig.w * scale), (int)(orig.h * scale));
if(flip) flip_image(im);
resize_network(net, im.w, im.h);
layer last = net->layers[net->n-1];
//net->layers[net->n - 1].activation = LINEAR;
image delta = make_image(im.w, im.h, im.c);
network_state state = {0};
#ifdef GPU
state.input = cuda_make_array(im.data, im.w*im.h*im.c);
state.delta = cuda_make_array(0, im.w*im.h*im.c);
forward_network_gpu(*net, state);
copy_ongpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1);
cuda_pull_array(last.delta_gpu, last.delta, last.outputs);
calculate_loss(last.delta, last.delta, last.outputs, thresh);
cuda_push_array(last.delta_gpu, last.delta, last.outputs);
backward_network_gpu(*net, state);
cuda_pull_array(state.delta, delta.data, im.w*im.h*im.c);
cuda_free(state.input);
cuda_free(state.delta);
#else
state.input = im.data;
state.delta = delta.data;
forward_network(*net, state);
copy_cpu(last.outputs, last.output, 1, last.delta, 1);
calculate_loss(last.output, last.delta, last.outputs, thresh);
backward_network(*net, state);
#endif
if(flip) flip_image(delta);
//normalize_array(delta.data, delta.w*delta.h*delta.c);
image resized = resize_image(delta, orig.w, orig.h);
image out = crop_image(resized, -dx, -dy, orig.w, orig.h);
/*
image g = grayscale_image(out);
free_image(out);
out = g;
*/
//rate = rate / abs_mean(out.data, out.w*out.h*out.c);
normalize_array(out.data, out.w*out.h*out.c);
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1);
/*
normalize_array(orig.data, orig.w*orig.h*orig.c);
scale_image(orig, sqrt(var));
translate_image(orig, mean);
*/
translate_image(orig, 1);
scale_image(orig, .5);
//normalize_image(orig);
constrain_image(orig);
free_image(crop);
free_image(im);
free_image(delta);
free_image(resized);
free_image(out);
}
void run_nightmare(int argc, char **argv)
{
srand(0);
if(argc < 4){
fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[2];
char *weights = argv[3];
char *input = argv[4];
int max_layer = atoi(argv[5]);
int range = find_int_arg(argc, argv, "-range", 1);
int rounds = find_int_arg(argc, argv, "-rounds", 1);
int iters = find_int_arg(argc, argv, "-iters", 10);
int octaves = find_int_arg(argc, argv, "-octaves", 4);
float zoom = find_float_arg(argc, argv, "-zoom", 1.);
float rate = find_float_arg(argc, argv, "-rate", .04);
float thresh = find_float_arg(argc, argv, "-thresh", 1.);
float rotate = find_float_arg(argc, argv, "-rotate", 0);
network net = parse_network_cfg(cfg);
load_weights(&net, weights);
char *cfgbase = basecfg(cfg);
char *imbase = basecfg(input);
set_batch_network(&net, 1);
image im = load_image_color(input, 0, 0);
if(0){
float scale = 1;
if(im.w > 512 || im.h > 512){
if(im.w > im.h) scale = 512.0/im.w;
else scale = 512.0/im.h;
}
image resized = resize_image(im, scale*im.w, scale*im.h);
free_image(im);
im = resized;
}
int e;
int n;
for(e = 0; e < rounds; ++e){
fprintf(stderr, "Iteration: ");
fflush(stderr);
for(n = 0; n < iters; ++n){
fprintf(stderr, "%d, ", n);
fflush(stderr);
int layer = max_layer + rand()%range - range/2;
int octave = rand()%octaves;
optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh);
}
fprintf(stderr, "done\n");
if(0){
image g = grayscale_image(im);
free_image(im);
im = g;
}
char buff[256];
sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e);
printf("%d %s\n", e, buff);
save_image(im, buff);
//show_image(im, buff);
//cvWaitKey(0);
if(rotate){
image rot = rotate_image(im, rotate);
free_image(im);
im = rot;
}
image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom);
image resized = resize_image(crop, im.w, im.h);
free_image(im);
free_image(crop);
im = resized;
}
}

View File

@ -343,6 +343,7 @@ network parse_network_cfg(char *filename)
}else{
fprintf(stderr, "Type not recognized: %s\n", s->type);
}
l.dontload = option_find_int_quiet(options, "dontload", 0);
net.layers[count] = l;
free_section(s);
n = n->next;
@ -527,6 +528,7 @@ void load_weights_upto(network *net, char *filename, int cutoff)
int i;
for(i = 0; i < net->n && i < cutoff; ++i){
layer l = net->layers[i];
if (l.dontload) continue;
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
fread(l.biases, sizeof(float), l.n, fp);

View File

@ -8,6 +8,56 @@
#include "utils.h"
void del_arg(int argc, char **argv, int index)
{
int i;
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
argv[i] = 0;
}
int find_arg(int argc, char* argv[], char *arg)
{
int i;
for(i = 0; i < argc; ++i) {
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)) {
del_arg(argc, argv, i);
return 1;
}
}
return 0;
}
int find_int_arg(int argc, char **argv, char *arg, int def)
{
int i;
for(i = 0; i < argc-1; ++i){
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)){
def = atoi(argv[i+1]);
del_arg(argc, argv, i);
del_arg(argc, argv, i);
break;
}
}
return def;
}
float find_float_arg(int argc, char **argv, char *arg, float def)
{
int i;
for(i = 0; i < argc-1; ++i){
if(!argv[i]) continue;
if(0==strcmp(argv[i], arg)){
def = atof(argv[i+1]);
del_arg(argc, argv, i);
del_arg(argc, argv, i);
break;
}
}
return def;
}
char *basecfg(char *cfgfile)
{

View File

@ -36,6 +36,9 @@ float variance_array(float *a, int n);
float mag_array(float *a, int n);
float **one_hot_encode(float *a, int n, int k);
float sec(clock_t clocks);
int find_int_arg(int argc, char **argv, char *arg, int def);
float find_float_arg(int argc, char **argv, char *arg, float def);
int find_arg(int argc, char* argv[], char *arg);
#endif