mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added C implementation of calculation mAP (mean average precision) using Darknet
This commit is contained in:
12
build/darknet/x64/calc_mAP.cmd
Normal file
12
build/darknet/x64/calc_mAP.cmd
Normal file
@ -0,0 +1,12 @@
|
||||
rem # How to calculate mAP (mean average precision)
|
||||
|
||||
|
||||
darknet.exe detector map data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights
|
||||
|
||||
|
||||
rem darknet.exe detector map data/voc.data yolo-voc.cfg yolo-voc.weights
|
||||
|
||||
|
||||
|
||||
|
||||
pause
|
@ -3,9 +3,9 @@ rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install cPi
|
||||
rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install _pickle
|
||||
|
||||
|
||||
rem darknet.exe detector valid data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights
|
||||
darknet.exe detector valid data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights
|
||||
|
||||
darknet.exe detector valid data/voc.data yolo-voc.cfg yolo-voc.weights
|
||||
rem darknet.exe detector valid data/voc.data yolo-voc.cfg yolo-voc.weights
|
||||
|
||||
|
||||
reval_voc_py3.py --year 2007 --classes data\voc.names --image_set test --voc_dir E:\VOC2007_2012\VOCtrainval_11-May-2012\VOCdevkit results
|
284
src/detector.c
284
src/detector.c
@ -315,6 +315,8 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
float thresh = .005;
|
||||
float nms = .45;
|
||||
|
||||
int detection_count = 0;
|
||||
|
||||
int nthreads = 4;
|
||||
image *val = calloc(nthreads, sizeof(image));
|
||||
image *val_resized = calloc(nthreads, sizeof(image));
|
||||
@ -356,6 +358,15 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
int h = val[t].h;
|
||||
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
|
||||
|
||||
int x, y;
|
||||
for (x = 0; x < (l.w*l.h*l.n); ++x) {
|
||||
for (y = 0; y < classes; ++y)
|
||||
{
|
||||
if (probs[x][y]) ++detection_count;
|
||||
}
|
||||
}
|
||||
|
||||
if (coco){
|
||||
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
} else if (imagenet){
|
||||
@ -376,6 +387,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
fprintf(fp, "\n]\n");
|
||||
fclose(fp);
|
||||
}
|
||||
printf("\n detection_count = %d \n", detection_count);
|
||||
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||||
}
|
||||
|
||||
@ -409,6 +421,8 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
|
||||
float iou_thresh = .5;
|
||||
float nms = .4;
|
||||
|
||||
int detection_count = 0, truth_count = 0;
|
||||
|
||||
int total = 0;
|
||||
int correct = 0;
|
||||
int proposals = 0;
|
||||
@ -432,6 +446,7 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
|
||||
|
||||
int num_labels = 0;
|
||||
box_label *truth = read_boxes(labelpath, &num_labels);
|
||||
truth_count += num_labels;
|
||||
for(k = 0; k < l.w*l.h*l.n; ++k){
|
||||
if(probs[k][0] > thresh){
|
||||
++proposals;
|
||||
@ -458,6 +473,274 @@ void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
|
||||
free_image(orig);
|
||||
free_image(sized);
|
||||
}
|
||||
printf("\n truth_count = %d \n", truth_count);
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
box b;
|
||||
float p;
|
||||
int class_id;
|
||||
int image_index;
|
||||
int truth_flag;
|
||||
int unique_truth_index;
|
||||
} box_prob;
|
||||
|
||||
int detections_comparator(const void *pa, const void *pb)
|
||||
{
|
||||
box_prob a = *(box_prob *)pa;
|
||||
box_prob b = *(box_prob *)pb;
|
||||
float diff = a.p - b.p;
|
||||
if (diff < 0) return 1;
|
||||
else if (diff > 0) return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile)
|
||||
{
|
||||
int j;
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *valid_images = option_find_str(options, "valid", "data/train.list");
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
//char *prefix = option_find_str(options, "results", "results");
|
||||
char **names = get_labels(name_list);
|
||||
char *mapf = option_find_str(options, "map", 0);
|
||||
int *map = 0;
|
||||
if (mapf) map = read_map(mapf);
|
||||
|
||||
network net = parse_network_cfg_custom(cfgfile, 1);
|
||||
if (weightfile) {
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *base = "comp4_det_test_";
|
||||
list *plist = get_paths(valid_images);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
int classes = l.classes;
|
||||
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
|
||||
int m = plist->size;
|
||||
int i = 0;
|
||||
int t;
|
||||
|
||||
const float thresh = .005;
|
||||
const float nms = .45;
|
||||
const float iou_thresh = 0.5;
|
||||
|
||||
int nthreads = 4;
|
||||
image *val = calloc(nthreads, sizeof(image));
|
||||
image *val_resized = calloc(nthreads, sizeof(image));
|
||||
image *buf = calloc(nthreads, sizeof(image));
|
||||
image *buf_resized = calloc(nthreads, sizeof(image));
|
||||
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
||||
|
||||
load_args args = { 0 };
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.type = IMAGE_DATA;
|
||||
|
||||
box_prob *detections = calloc(1, sizeof(box_prob));
|
||||
int detections_count = 0;
|
||||
int unique_truth_index = 0;
|
||||
|
||||
int *truth_classes_count = calloc(classes, sizeof(int));
|
||||
|
||||
for (t = 0; t < nthreads; ++t) {
|
||||
args.path = paths[i + t];
|
||||
args.im = &buf[t];
|
||||
args.resized = &buf_resized[t];
|
||||
thr[t] = load_data_in_thread(args);
|
||||
}
|
||||
time_t start = time(0);
|
||||
for (i = nthreads; i < m + nthreads; i += nthreads) {
|
||||
fprintf(stderr, "%d\n", i);
|
||||
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
|
||||
pthread_join(thr[t], 0);
|
||||
val[t] = buf[t];
|
||||
val_resized[t] = buf_resized[t];
|
||||
}
|
||||
for (t = 0; t < nthreads && i + t < m; ++t) {
|
||||
args.path = paths[i + t];
|
||||
args.im = &buf[t];
|
||||
args.resized = &buf_resized[t];
|
||||
thr[t] = load_data_in_thread(args);
|
||||
}
|
||||
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
|
||||
const int image_index = i + t - nthreads;
|
||||
char *path = paths[i + t - nthreads];
|
||||
char *id = basecfg(path);
|
||||
float *X = val_resized[t].data;
|
||||
network_predict(net, X);
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
|
||||
|
||||
char labelpath[4096];
|
||||
find_replace(path, "images", "labels", labelpath);
|
||||
find_replace(labelpath, "JPEGImages", "labels", labelpath);
|
||||
find_replace(labelpath, ".jpg", ".txt", labelpath);
|
||||
find_replace(labelpath, ".JPEG", ".txt", labelpath);
|
||||
find_replace(labelpath, ".png", ".txt", labelpath);
|
||||
int num_labels = 0;
|
||||
box_label *truth = read_boxes(labelpath, &num_labels);
|
||||
int i, j;
|
||||
for (j = 0; j < num_labels; ++j) {
|
||||
truth_classes_count[truth[j].id]++;
|
||||
}
|
||||
|
||||
for (i = 0; i < (l.w*l.h*l.n); ++i) {
|
||||
|
||||
int class_id;
|
||||
for (class_id = 0; class_id < classes; ++class_id) {
|
||||
float prob = probs[i][class_id];
|
||||
if (prob > 0) {
|
||||
detections_count++;
|
||||
detections = realloc(detections, detections_count * sizeof(box_prob));
|
||||
detections[detections_count - 1].b = boxes[i];
|
||||
detections[detections_count - 1].p = prob;
|
||||
detections[detections_count - 1].image_index = image_index;
|
||||
detections[detections_count - 1].class_id = class_id;
|
||||
|
||||
int truth_index = -1;
|
||||
float max_iou = 0;
|
||||
for (j = 0; j < num_labels; ++j)
|
||||
{
|
||||
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
|
||||
//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
|
||||
// box_iou(boxes[i], t), prob, class_id, truth[j].id);
|
||||
float current_iou = box_iou(boxes[i], t);
|
||||
if (current_iou > iou_thresh && class_id == truth[j].id) {
|
||||
if (current_iou > max_iou) {
|
||||
current_iou = max_iou;
|
||||
truth_index = unique_truth_index + j;
|
||||
}
|
||||
}
|
||||
}
|
||||
// best IoU
|
||||
if (truth_index > -1) {
|
||||
detections[detections_count - 1].truth_flag = 1;
|
||||
detections[detections_count - 1].unique_truth_index = truth_index;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unique_truth_index += num_labels;
|
||||
|
||||
free(id);
|
||||
free_image(val[t]);
|
||||
free_image(val_resized[t]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// SORT(detections)
|
||||
qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
|
||||
|
||||
typedef struct {
|
||||
double precision;
|
||||
double recall;
|
||||
int tp, fp, fn;
|
||||
} pr_t;
|
||||
|
||||
// for PR-curve
|
||||
pr_t **pr = calloc(classes, sizeof(pr_t*));
|
||||
for (i = 0; i < classes; ++i) {
|
||||
pr[i] = calloc(detections_count, sizeof(pr_t));
|
||||
}
|
||||
printf("detections_count = %d, unique_truth_index = %d \n", detections_count, unique_truth_index);
|
||||
|
||||
|
||||
int *truth_flags = calloc(unique_truth_index, sizeof(int));
|
||||
|
||||
int rank;
|
||||
for (rank = 0; rank < detections_count; ++rank) {
|
||||
if(rank % 100 == 0)
|
||||
printf(" rank = %d of ranks = %d \r", rank, detections_count);
|
||||
|
||||
if (rank > 0) {
|
||||
int class_id;
|
||||
for (class_id = 0; class_id < classes; ++class_id) {
|
||||
pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
|
||||
pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
|
||||
}
|
||||
}
|
||||
|
||||
box_prob d = detections[rank];
|
||||
// if (detected && isn't detected before)
|
||||
if (d.truth_flag == 1) {
|
||||
if (truth_flags[d.unique_truth_index] == 0)
|
||||
{
|
||||
truth_flags[d.unique_truth_index] = 1;
|
||||
pr[d.class_id][rank].tp++; // true-positive
|
||||
}
|
||||
}
|
||||
else {
|
||||
pr[d.class_id][rank].fp++; // false-positive
|
||||
}
|
||||
|
||||
|
||||
for (i = 0; i < classes; ++i)
|
||||
{
|
||||
const int tp = pr[i][rank].tp;
|
||||
const int fp = pr[i][rank].fp;
|
||||
const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive
|
||||
pr[i][rank].fn = fn;
|
||||
|
||||
if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
|
||||
else pr[i][rank].precision = 0;
|
||||
|
||||
if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
|
||||
else pr[i][rank].recall = 0;
|
||||
}
|
||||
}
|
||||
|
||||
free(truth_flags);
|
||||
|
||||
|
||||
double mean_average_precision = 0;
|
||||
|
||||
for (i = 0; i < classes; ++i) {
|
||||
double avg_precision = 0;
|
||||
int point;
|
||||
for (point = 0; point < 11; ++point) {
|
||||
double cur_recall = point * 0.1;
|
||||
double cur_precision = 0;
|
||||
for (rank = 0; rank < detections_count; ++rank)
|
||||
{
|
||||
if (pr[i][rank].recall >= cur_recall) { // > or >=
|
||||
if (pr[i][rank].precision > cur_precision) {
|
||||
cur_precision = pr[i][rank].precision;
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("point = %d, cur_recall = %.4f, cur_precision = %.4f \n", point, cur_recall, cur_precision);
|
||||
|
||||
avg_precision += cur_precision;
|
||||
}
|
||||
avg_precision = avg_precision / 11;
|
||||
printf("class = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
|
||||
mean_average_precision += avg_precision;
|
||||
}
|
||||
|
||||
mean_average_precision = mean_average_precision / classes;
|
||||
printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
|
||||
|
||||
|
||||
for (i = 0; i < classes; ++i) {
|
||||
free(pr[i]);
|
||||
}
|
||||
free(pr);
|
||||
free(detections);
|
||||
free(truth_classes_count);
|
||||
|
||||
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||||
}
|
||||
|
||||
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
@ -565,6 +848,7 @@ void run_detector(int argc, char **argv)
|
||||
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "demo")) {
|
||||
list *options = read_data_cfg(datacfg);
|
||||
int classes = option_find_int(options, "classes", 20);
|
||||
|
Reference in New Issue
Block a user