diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c index bbc4807e..0bde97a5 100644 --- a/src/convolutional_layer.c +++ b/src/convolutional_layer.c @@ -684,6 +684,8 @@ void forward_convolutional_layer(convolutional_layer l, network_state state) // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) { size_t ldb_align = 256;// 8; + if (k > 4096)ldb_align = 4096; + size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; size_t t_intput_size = new_ldb * n; size_t t_bit_input_size = t_intput_size / 8;// +1; diff --git a/src/gemm.c b/src/gemm.c index ee7fa151..63163a53 100644 --- a/src/gemm.c +++ b/src/gemm.c @@ -1,857 +1,956 @@ -#include "gemm.h" -#include "utils.h" -#include "cuda.h" -#include -#include -#include - -void gemm_bin(int M, int N, int K, float ALPHA, - char *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i,j,k; - for(i = 0; i < M; ++i){ - for(k = 0; k < K; ++k){ - char A_PART = A[i*lda+k]; - if(A_PART){ - for(j = 0; j < N; ++j){ - C[i*ldc+j] += B[k*ldb+j]; - } - } else { - for(j = 0; j < N; ++j){ - C[i*ldc+j] -= B[k*ldb+j]; - } - } - } - } -} - -float *random_matrix(int rows, int cols) -{ - int i; - float *m = calloc(rows*cols, sizeof(float)); - for(i = 0; i < rows*cols; ++i){ - m[i] = (float)rand()/RAND_MAX; - } - return m; -} - -void time_random_matrix(int TA, int TB, int m, int k, int n) -{ - float *a; - if(!TA) a = random_matrix(m,k); - else a = random_matrix(k,m); - int lda = (!TA)?k:m; - float *b; - if(!TB) b = random_matrix(k,n); - else b = random_matrix(n,k); - int ldb = (!TB)?n:k; - - float *c = random_matrix(m,n); - int i; - clock_t start = clock(), end; - for(i = 0; i<10; ++i){ - gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); - } - end = clock(); - printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); - free(a); - free(b); - free(c); -} - - -void gemm(int TA, int TB, int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float BETA, - float *C, int ldc) -{ - gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); -} - - -//-------------------------------------------- -// XNOR bitwise GEMM for binary neural network -//-------------------------------------------- - -#include - -static inline unsigned char xnor(unsigned char a, unsigned char b) { - //return a == b; - return !(a^b); -} - -// INT-32 -static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) { - size_t src_i = index / 32; - int src_shift = index % 32; - unsigned char val = (src[src_i] & (1 << src_shift)) > 0; - return val; -} - -static inline uint32_t xnor_int32(uint32_t a, uint32_t b) { - return ~(a^b); -} - -static inline uint64_t xnor_int64(uint64_t a, uint64_t b) { - return ~(a^b); -} - - -static inline uint32_t fill_bit_int32(char src) { - if (src == 0) return 0x00000000; - else return 0xFFFFFFFF; -} - -static inline uint64_t fill_bit_int64(char src) { - if (src == 0) return 0x0000000000000000; - else return 0xFFFFFFFFFFFFFFFF; -} - -void binary_int32_printf(uint32_t src) { - int i; - for (i = 0; i < 32; ++i) { - if (src & 1) printf("1"); - else printf("0"); - src = src >> 1; - } - printf("\n"); -} - -void binary_int64_printf(uint64_t src) { - int i; - for (i = 0; i < 64; ++i) { - if (src & 1) printf("1"); - else printf("0"); - src = src >> 1; - } - printf("\n"); -} - -/* -void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, - unsigned char *A, int lda, - unsigned char *B, int ldb, - float *C, int ldc, float *mean_arr) -{ - int *count_arr = calloc(M*N, sizeof(int)); - - int i, j, k; - for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] - for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] - char a_bit = get_bit(A, i*lda + k); - - for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] - char b_bit = get_bit(B, k*ldb + j); - count_arr[i*ldc + j] += xnor(a_bit, b_bit); - } - } - } - - for (i = 0; i < M; ++i) { - float mean_val = mean_arr[i]; - for (j = 0; j < N; ++j) { - C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; - } - } - free(count_arr); -} -*/ - -/* -void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, - unsigned char *A, int lda, - unsigned char *B, int ldb, - float *C, int ldc, float *mean_arr) -{ - int *count_arr = calloc(M*N, sizeof(int)); - - int i, j, k; - for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] - for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] - for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] - char a_bit = get_bit(A, i*lda + k); - char b_bit = get_bit(B, j*ldb + k); - count_arr[i*ldc + j] += xnor(a_bit, b_bit); - } - } - } - - for (i = 0; i < M; ++i) { - float mean_val = mean_arr[i]; - for (j = 0; j < N; ++j) { - C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; - } - } - free(count_arr); -} -*/ - -/* -void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, - unsigned char *A, int lda, - unsigned char *B, int ldb, - float *C, int ldc, float *mean_arr) -{ - int *count_arr = calloc(M*N, sizeof(int)); - - int i, j, k, h; - -#pragma omp parallel for - for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] - for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] - const char a_bit = get_bit(A, i*lda + k); - uint64_t a_bit64 = fill_bit_int64(a_bit); - int k_ldb = k*ldb; - - for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056] - if ((N - j > 64) && (k_ldb % 8 == 0)) { - uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8)); - uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); - //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc - printf("\n %d \n", __popcnt64(c_bit64)); // msvs - - int h; - for (h = 0; h < 64; ++h) - if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1; - - //binary_int64_printf(a_bit64); - //binary_int64_printf(b_bit64); - //binary_int64_printf(c_bit64); - } - else { - for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] - char b_bit = get_bit(B, k_ldb + j); - if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1; - } - } - - } - } - } - - if (mean_arr) { - //int K_2 = K / 2; - for (i = 0; i < M; ++i) { - float mean_val = mean_arr[i]; - //float mean_val2 = 2 * mean_val; - for (j = 0; j < N; ++j) { - C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; - //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2; - } - } - } - else { - for (i = 0; i < M; ++i) { - for (j = 0; j < N; ++j) { - C[i*ldc + j] = count_arr[i*ldc + j] - K / 2; - } - } - } - - free(count_arr); - - //getchar(); -} -*/ - - -/* -void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, - unsigned char *A, int lda, - unsigned char *B, int ldb, - float *C, int ldc, float *mean_arr) -{ - int i, j, k, h; - -#pragma omp parallel for - for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] - float mean_val = mean_arr[i]; - - for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] - int count = 0; - - for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] - uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); - uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); - uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); - -#ifdef WIN32 - int tmp_count = __popcnt64(c_bit64); -#else - int tmp_count = __builtin_popcountll(c_bit64); -#endif - - if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits - count += tmp_count; - //binary_int64_printf(c_bit64); - //printf(", count = %d \n\n", tmp_count); - } - - C[i*ldc + j] = (2 * count - K) * mean_val; - } - } -} -*/ - -//---------------------------- - - -#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) - -#define OSXSAVEFlag (1UL<<27) -#define AVXFlag ((1UL<<28)|OSXSAVEFlag) -#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag) -#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag) -#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag) - -#ifdef _WIN64 -#include -#include -#include -#include - -#else // Linux GCC/Clang -#include -#include -#include -#include -#include - -void asm_cpuid(uint32_t* abcd, uint32_t eax) -{ - uint32_t ebx = 0, edx = 0, ecx = 0; - - // EBX is saved to EDI and later restored - __asm__("movl %%ebx, %%edi;" - "cpuid;" - "xchgl %%ebx, %%edi;" - : "=D"(ebx), - "+a"(eax), "+c"(ecx), "=d"(edx)); - - abcd[0] = eax; - abcd[1] = ebx; - abcd[2] = ecx; - abcd[3] = edx; -} - -#endif - -int simd_detect_x86(unsigned int idFeature) -{ - uint32_t regs[4]; // EAX, EBX, ECX, EDX; -#ifdef _WIN32 - __cpuid(regs, 0); - if (regs[0] > 1U) __cpuid(regs, 1); -#else - __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]); - if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]); -#endif - - if ((regs[2] & idFeature) != idFeature) - return 0; - return 1; -} - -int is_fma_avx() { - static int result = -1; - if (result == -1) { - result = simd_detect_x86(AVXFlag); - if (result == 1) printf(" Used AVX \n"); - else printf(" Not used AVX \n"); - } - return result; -} - -// https://software.intel.com/sites/landingpage/IntrinsicsGuide -void gemm_nn(int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i, j, k; - if (is_fma_avx() == 1) { // AVX - for (i = 0; i < M; ++i) { - for (k = 0; k < K; ++k) { - float A_PART = ALPHA*A[i*lda + k]; - __m256 a256, b256, c256, result256; // AVX - a256 = _mm256_set1_ps(A_PART); - for (j = 0; j < N - 8; j += 8) { - b256 = _mm256_loadu_ps(&B[k*ldb + j]); - c256 = _mm256_loadu_ps(&C[i*ldc + j]); - // FMA - Intel Haswell (2013), AMD Piledriver (2012) - //result256 = _mm256_fmadd_ps(a256, b256, c256); - result256 = _mm256_mul_ps(a256, b256); - result256 = _mm256_add_ps(result256, c256); - _mm256_storeu_ps(&C[i*ldc + j], result256); - } - - int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8; - for (j = prev_end; j < N; ++j) - C[i*ldc + j] += A_PART*B[k*ldb + j]; - } - } - } - else { - for (i = 0; i < M; ++i) { - for (k = 0; k < K; ++k) { - register float A_PART = ALPHA*A[i*lda + k]; - for (j = 0; j < N; ++j) { - C[i*ldc + j] += A_PART*B[k*ldb + j]; - } - /* // SSE - __m128 a128, b128, c128, result128; // SSE - a128 = _mm_set1_ps(A_PART); - for (j = 0; j < N - 4; j += 4) { - b128 = _mm_loadu_ps(&B[k*ldb + j]); - c128 = _mm_loadu_ps(&C[i*ldc + j]); - //result128 = _mm_fmadd_ps(a128, b128, c128); - result128 = _mm_mul_ps(a128, b128); - result128 = _mm_add_ps(result128, c128); - _mm_storeu_ps(&C[i*ldc + j], result128); - } - - int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4; - for (j = prev_end; j < N; ++j){ - C[i*ldc + j] += A_PART*B[k*ldb + j]; - } - */ - } - } - } -} - - -// http://graphics.stanford.edu/~seander/bithacks.html -// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register - -// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf - -static inline int popcnt128(__m128i n) { - const __m128i n_hi = _mm_unpackhi_epi64(n, n); -#ifdef _MSC_VER - return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi)); -#else - return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi)); -#endif -} - -static inline int popcnt256(__m256i n) { - return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1)); -} - -void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, - unsigned char *A, int lda, - unsigned char *B, int ldb, - float *C, int ldc, float *mean_arr) -{ - __m256i all_1 = _mm256_set1_epi8(255); - int i, j, k, h; - - #pragma omp parallel for - for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] - float mean_val = mean_arr[i]; - - for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] - int count = 0; - const int bit_step = 256; - - for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216] - - //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8)); - //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8)); - //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128); - //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1); - //int tmp_count = popcnt128(c_bit128); - - __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8)); - __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8)); - __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); - __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT - int tmp_count = popcnt256(c_bit256); - - if (K - k < bit_step) tmp_count = tmp_count - (bit_step - (K - k)); // remove extra bits - count += tmp_count; - //binary_int64_printf(c_bit64); - //printf(", count = %d \n\n", tmp_count); - } - - C[i*ldc + j] = (2 * count - K) * mean_val; - } - } -} - - -void float_to_bit(float *src, unsigned char *dst, size_t size) -{ - size_t dst_size = size / 8 + 1; - memset(dst, 0, dst_size); - - size_t i; - __m128i all128_0 = _mm_set_epi32(0, 0, 0, 0); - __m256 all256_0 = _mm256_set1_ps(0); - __m256i bits_asc = _mm256_set_epi32(1, 2, 4, 8, 16, 32, 64, 128); - //for(i = 0; i < 8; ++i) bits_asc.m256i_i32[i] = 1 << i; - - for (i = 0; i < size; i+=8) - { - __m256 src256 = _mm256_loadu_ps((__m256i *)(&src[i])); // load 256 bits - __m256 result256 = _mm256_cmp_ps(src256, all256_0, _CMP_GT_OS); // compare dst[i] = (float[i] > 0) - - __m256i bits256 = _mm256_castps_si256(result256); // floats to ints32 - __m256i and256 = _mm256_and_si256(bits256, bits_asc); // bitwise and - - // sum all elements from single and256 - __m128i tmp128 = _mm_hadd_epi32(_mm256_extractf128_si256(and256, 0), _mm256_extractf128_si256(and256, 1)); - tmp128 = _mm_hadd_epi32(tmp128, all128_0); - tmp128 = _mm_hadd_epi32(tmp128, all128_0); - - dst[i / 8] = tmp128.m128i_i32[0]; - } - // int _mm256_movemask_epi8 (__m256i a) -} - -#else - -void gemm_nn(int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i, j, k; - for (i = 0; i < M; ++i) { - for (k = 0; k < K; ++k) { - register float A_PART = ALPHA*A[i*lda + k]; - for (j = 0; j < N; ++j) { - C[i*ldc + j] += A_PART*B[k*ldb + j]; - } - } - } -} - -void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, - unsigned char *A, int lda, - unsigned char *B, int ldb, - float *C, int ldc, float *mean_arr) -{ - int i, j, k, h; - -#pragma omp parallel for - for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] - float mean_val = mean_arr[i]; - - for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] - int count = 0; - - for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] - uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); - uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); - uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); - -#ifdef WIN32 - int tmp_count = __popcnt64(c_bit64); -#else - int tmp_count = __builtin_popcountll(c_bit64); -#endif - - if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits - count += tmp_count; - //binary_int64_printf(c_bit64); - //printf(", count = %d \n\n", tmp_count); - } - - C[i*ldc + j] = (2 * count - K) * mean_val; - } - } -} - -void float_to_bit(float *src, unsigned char *dst, size_t size) -{ - size_t dst_size = size / 8 + 1; - memset(dst, 0, dst_size); - - size_t i; - char *byte_arr = calloc(size, sizeof(char)); - for (i = 0; i < size; ++i) { - if (src[i] > 0) byte_arr[i] = 1; - } - - //for (i = 0; i < size; ++i) { - // dst[i / 8] |= byte_arr[i] << (i % 8); - //} - - for (i = 0; i < size; i += 8) { - char dst_tmp = 0; - dst_tmp |= byte_arr[i + 0] << 0; - dst_tmp |= byte_arr[i + 1] << 1; - dst_tmp |= byte_arr[i + 2] << 2; - dst_tmp |= byte_arr[i + 3] << 3; - dst_tmp |= byte_arr[i + 4] << 4; - dst_tmp |= byte_arr[i + 5] << 5; - dst_tmp |= byte_arr[i + 6] << 6; - dst_tmp |= byte_arr[i + 7] << 7; - dst[i / 8] = dst_tmp; - } - free(byte_arr); -} -#endif // __x86_64 - -void gemm_nt(int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i,j,k; - for(i = 0; i < M; ++i){ - for(j = 0; j < N; ++j){ - register float sum = 0; - for(k = 0; k < K; ++k){ - sum += ALPHA*A[i*lda+k]*B[j*ldb + k]; - } - C[i*ldc+j] += sum; - } - } -} - -void gemm_tn(int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i,j,k; - for(i = 0; i < M; ++i){ - for(k = 0; k < K; ++k){ - register float A_PART = ALPHA*A[k*lda+i]; - for(j = 0; j < N; ++j){ - C[i*ldc+j] += A_PART*B[k*ldb+j]; - } - } - } -} - -void gemm_tt(int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i,j,k; - for(i = 0; i < M; ++i){ - for(j = 0; j < N; ++j){ - register float sum = 0; - for(k = 0; k < K; ++k){ - sum += ALPHA*A[i+k*lda]*B[k+j*ldb]; - } - C[i*ldc+j] += sum; - } - } -} - - -void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float BETA, - float *C, int ldc) -{ - //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); - if (BETA != 1){ - int i, j; - for(i = 0; i < M; ++i){ - for(j = 0; j < N; ++j){ - C[i*ldc + j] *= BETA; - } - } - } - - int t; - #pragma omp parallel for - for (t = 0; t < M; ++t) { - if (!TA && !TB) - gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); - else if (TA && !TB) - gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); - else if (!TA && TB) - gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); - else - gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); - } -} - -#ifdef GPU - -#include - -void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, - float *A_gpu, int lda, - float *B_gpu, int ldb, - float BETA, - float *C_gpu, int ldc) -{ - cublasHandle_t handle = blas_handle(); - cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream()); - cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), - (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); - check_error(status); -} - -void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float BETA, - float *C, int ldc) -{ - float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); - float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); - float *C_gpu = cuda_make_array(C, ldc*M); - - gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); - - cuda_pull_array(C_gpu, C, ldc*M); - cuda_free(A_gpu); - cuda_free(B_gpu); - cuda_free(C_gpu); -} - -#include -#include -#include -#include - -void time_gpu_random_matrix(int TA, int TB, int m, int k, int n) -{ - float *a; - if(!TA) a = random_matrix(m,k); - else a = random_matrix(k,m); - int lda = (!TA)?k:m; - float *b; - if(!TB) b = random_matrix(k,n); - else b = random_matrix(n,k); - int ldb = (!TB)?n:k; - - float *c = random_matrix(m,n); - int i; - clock_t start = clock(), end; - for(i = 0; i<32; ++i){ - gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); - } - end = clock(); - printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); - free(a); - free(b); - free(c); -} - -void time_ongpu(int TA, int TB, int m, int k, int n) -{ - int iter = 10; - float *a = random_matrix(m,k); - float *b = random_matrix(k,n); - - int lda = (!TA)?k:m; - int ldb = (!TB)?n:k; - - float *c = random_matrix(m,n); - - float *a_cl = cuda_make_array(a, m*k); - float *b_cl = cuda_make_array(b, k*n); - float *c_cl = cuda_make_array(c, m*n); - - int i; - clock_t start = clock(), end; - for(i = 0; i +#include +#include + +void gemm_bin(int M, int N, int K, float ALPHA, + char *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i,j,k; + for(i = 0; i < M; ++i){ + for(k = 0; k < K; ++k){ + char A_PART = A[i*lda+k]; + if(A_PART){ + for(j = 0; j < N; ++j){ + C[i*ldc+j] += B[k*ldb+j]; + } + } else { + for(j = 0; j < N; ++j){ + C[i*ldc+j] -= B[k*ldb+j]; + } + } + } + } +} + +float *random_matrix(int rows, int cols) +{ + int i; + float *m = calloc(rows*cols, sizeof(float)); + for(i = 0; i < rows*cols; ++i){ + m[i] = (float)rand()/RAND_MAX; + } + return m; +} + +void time_random_matrix(int TA, int TB, int m, int k, int n) +{ + float *a; + if(!TA) a = random_matrix(m,k); + else a = random_matrix(k,m); + int lda = (!TA)?k:m; + float *b; + if(!TB) b = random_matrix(k,n); + else b = random_matrix(n,k); + int ldb = (!TB)?n:k; + + float *c = random_matrix(m,n); + int i; + clock_t start = clock(), end; + for(i = 0; i<10; ++i){ + gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); + } + end = clock(); + printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); + free(a); + free(b); + free(c); +} + + +void gemm(int TA, int TB, int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float BETA, + float *C, int ldc) +{ + gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); +} + + +//-------------------------------------------- +// XNOR bitwise GEMM for binary neural network +//-------------------------------------------- + +#include + +static inline unsigned char xnor(unsigned char a, unsigned char b) { + //return a == b; + return !(a^b); +} + +// INT-32 +static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) { + size_t src_i = index / 32; + int src_shift = index % 32; + unsigned char val = (src[src_i] & (1 << src_shift)) > 0; + return val; +} + +static inline uint32_t xnor_int32(uint32_t a, uint32_t b) { + return ~(a^b); +} + +static inline uint64_t xnor_int64(uint64_t a, uint64_t b) { + return ~(a^b); +} + + +static inline uint32_t fill_bit_int32(char src) { + if (src == 0) return 0x00000000; + else return 0xFFFFFFFF; +} + +static inline uint64_t fill_bit_int64(char src) { + if (src == 0) return 0x0000000000000000; + else return 0xFFFFFFFFFFFFFFFF; +} + +void binary_int32_printf(uint32_t src) { + int i; + for (i = 0; i < 32; ++i) { + if (src & 1) printf("1"); + else printf("0"); + src = src >> 1; + } + printf("\n"); +} + +void binary_int64_printf(uint64_t src) { + int i; + for (i = 0; i < 64; ++i) { + if (src & 1) printf("1"); + else printf("0"); + src = src >> 1; + } + printf("\n"); +} + +/* +void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, + unsigned char *A, int lda, + unsigned char *B, int ldb, + float *C, int ldc, float *mean_arr) +{ + int *count_arr = calloc(M*N, sizeof(int)); + + int i, j, k; + for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] + for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] + char a_bit = get_bit(A, i*lda + k); + + for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] + char b_bit = get_bit(B, k*ldb + j); + count_arr[i*ldc + j] += xnor(a_bit, b_bit); + } + } + } + + for (i = 0; i < M; ++i) { + float mean_val = mean_arr[i]; + for (j = 0; j < N; ++j) { + C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; + } + } + free(count_arr); +} +*/ + +/* +void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, + unsigned char *A, int lda, + unsigned char *B, int ldb, + float *C, int ldc, float *mean_arr) +{ + int *count_arr = calloc(M*N, sizeof(int)); + + int i, j, k; + for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] + for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] + for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] + char a_bit = get_bit(A, i*lda + k); + char b_bit = get_bit(B, j*ldb + k); + count_arr[i*ldc + j] += xnor(a_bit, b_bit); + } + } + } + + for (i = 0; i < M; ++i) { + float mean_val = mean_arr[i]; + for (j = 0; j < N; ++j) { + C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; + } + } + free(count_arr); +} +*/ + +/* +void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, + unsigned char *A, int lda, + unsigned char *B, int ldb, + float *C, int ldc, float *mean_arr) +{ + int *count_arr = calloc(M*N, sizeof(int)); + + int i, j, k, h; + +#pragma omp parallel for + for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] + for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] + const char a_bit = get_bit(A, i*lda + k); + uint64_t a_bit64 = fill_bit_int64(a_bit); + int k_ldb = k*ldb; + + for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056] + if ((N - j > 64) && (k_ldb % 8 == 0)) { + uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8)); + uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); + //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc + printf("\n %d \n", __popcnt64(c_bit64)); // msvs + + int h; + for (h = 0; h < 64; ++h) + if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1; + + //binary_int64_printf(a_bit64); + //binary_int64_printf(b_bit64); + //binary_int64_printf(c_bit64); + } + else { + for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] + char b_bit = get_bit(B, k_ldb + j); + if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1; + } + } + + } + } + } + + if (mean_arr) { + //int K_2 = K / 2; + for (i = 0; i < M; ++i) { + float mean_val = mean_arr[i]; + //float mean_val2 = 2 * mean_val; + for (j = 0; j < N; ++j) { + C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; + //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2; + } + } + } + else { + for (i = 0; i < M; ++i) { + for (j = 0; j < N; ++j) { + C[i*ldc + j] = count_arr[i*ldc + j] - K / 2; + } + } + } + + free(count_arr); + + //getchar(); +} +*/ + + +/* +void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, + unsigned char *A, int lda, + unsigned char *B, int ldb, + float *C, int ldc, float *mean_arr) +{ + int i, j, k, h; + +#pragma omp parallel for + for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] + float mean_val = mean_arr[i]; + + for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] + int count = 0; + + for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] + uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); + uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); + uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); + +#ifdef WIN32 + int tmp_count = __popcnt64(c_bit64); +#else + int tmp_count = __builtin_popcountll(c_bit64); +#endif + + if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits + count += tmp_count; + //binary_int64_printf(c_bit64); + //printf(", count = %d \n\n", tmp_count); + } + + C[i*ldc + j] = (2 * count - K) * mean_val; + } + } +} +*/ + +//---------------------------- + + +#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) + +#define OSXSAVEFlag (1UL<<27) +#define AVXFlag ((1UL<<28)|OSXSAVEFlag) +#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag) +#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag) +#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag) + +#ifdef _WIN64 +#include +#include +#include +#include + +#else // Linux GCC/Clang +#include +#include +#include +#include +#include + +void asm_cpuid(uint32_t* abcd, uint32_t eax) +{ + uint32_t ebx = 0, edx = 0, ecx = 0; + + // EBX is saved to EDI and later restored + __asm__("movl %%ebx, %%edi;" + "cpuid;" + "xchgl %%ebx, %%edi;" + : "=D"(ebx), + "+a"(eax), "+c"(ecx), "=d"(edx)); + + abcd[0] = eax; + abcd[1] = ebx; + abcd[2] = ecx; + abcd[3] = edx; +} + +#endif + +int simd_detect_x86(unsigned int idFeature) +{ + uint32_t regs[4]; // EAX, EBX, ECX, EDX; +#ifdef _WIN32 + __cpuid(regs, 0); + if (regs[0] > 1U) __cpuid(regs, 1); +#else + __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]); + if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]); +#endif + + if ((regs[2] & idFeature) != idFeature) + return 0; + return 1; +} + +int is_fma_avx() { + static int result = -1; + if (result == -1) { + result = simd_detect_x86(AVXFlag); + if (result == 1) printf(" Used AVX \n"); + else printf(" Not used AVX \n"); + } + return result; +} + +// https://software.intel.com/sites/landingpage/IntrinsicsGuide +void gemm_nn(int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i, j, k; + if (is_fma_avx() == 1) { // AVX + for (i = 0; i < M; ++i) { + for (k = 0; k < K; ++k) { + float A_PART = ALPHA*A[i*lda + k]; + __m256 a256, b256, c256, result256; // AVX + a256 = _mm256_set1_ps(A_PART); + for (j = 0; j < N - 8; j += 8) { + b256 = _mm256_loadu_ps(&B[k*ldb + j]); + c256 = _mm256_loadu_ps(&C[i*ldc + j]); + // FMA - Intel Haswell (2013), AMD Piledriver (2012) + //result256 = _mm256_fmadd_ps(a256, b256, c256); + result256 = _mm256_mul_ps(a256, b256); + result256 = _mm256_add_ps(result256, c256); + _mm256_storeu_ps(&C[i*ldc + j], result256); + } + + int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8; + for (j = prev_end; j < N; ++j) + C[i*ldc + j] += A_PART*B[k*ldb + j]; + } + } + } + else { + for (i = 0; i < M; ++i) { + for (k = 0; k < K; ++k) { + register float A_PART = ALPHA*A[i*lda + k]; + for (j = 0; j < N; ++j) { + C[i*ldc + j] += A_PART*B[k*ldb + j]; + } + /* // SSE + __m128 a128, b128, c128, result128; // SSE + a128 = _mm_set1_ps(A_PART); + for (j = 0; j < N - 4; j += 4) { + b128 = _mm_loadu_ps(&B[k*ldb + j]); + c128 = _mm_loadu_ps(&C[i*ldc + j]); + //result128 = _mm_fmadd_ps(a128, b128, c128); + result128 = _mm_mul_ps(a128, b128); + result128 = _mm_add_ps(result128, c128); + _mm_storeu_ps(&C[i*ldc + j], result128); + } + + int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4; + for (j = prev_end; j < N; ++j){ + C[i*ldc + j] += A_PART*B[k*ldb + j]; + } + */ + } + } + } +} + + +// http://graphics.stanford.edu/~seander/bithacks.html +// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register + + +static inline int popcnt128(__m128i n) { + const __m128i n_hi = _mm_unpackhi_epi64(n, n); +#ifdef _MSC_VER + return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi)); +#else + return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi)); +#endif +} + +static inline int popcnt256(__m256i n) { + return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1)); +} + +static inline __m256i count256(__m256i v) { + __m256i lookup = + _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, + 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, + 1, 2, 2, 3, 2, 3, 3, 4); + + __m256i low_mask = _mm256_set1_epi8(0x0f); + + __m256i lo = _mm256_and_si256(v, low_mask); + __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask); + __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo); + __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi); + __m256i total = _mm256_add_epi8(popcnt1, popcnt2); + + return _mm256_sad_epu8(total, _mm256_setzero_si256()); +} +static inline int popcnt256_custom(__m256i n) { + return _mm_popcnt_u64(n.m256i_i64[0]) + + _mm_popcnt_u64(n.m256i_i64[1]) + + _mm_popcnt_u64(n.m256i_i64[2]) + + _mm_popcnt_u64(n.m256i_i64[3]); +} + +static inline void CSA(__m256i * h, __m256i * l, __m256i a, __m256i b, __m256i c) +{ + __m256i u = _mm256_xor_si256(a, b); + *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c)); + *l = _mm256_xor_si256(u, c); +} + +static inline __m256i xnor256(__m256i a_bit256, __m256i b_bit256) { + __m256i all_1 = _mm256_set1_epi8(255); + __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); + __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); + + return c_bit256; + +} + +// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf +// step = 16*256/8 = 512 bytes = 4096 bit (ldb, lda, bit_step, align - all should be aligned by 4096 bit) +static inline uint64_t avx_hs_custom(__m256i * A, __m256i * B, uint64_t size) { + __m256i total = _mm256_setzero_si256(); + __m256i ones = _mm256_setzero_si256(); + __m256i twos = _mm256_setzero_si256(); + __m256i fours = _mm256_setzero_si256(); + __m256i eights = _mm256_setzero_si256(); + __m256i sixteens = _mm256_setzero_si256(); + __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; + + for (uint64_t i = 0; i < size; i += 16) { + //CSA(&twosA, &ones, ones, d[i], d[i + 1]); + CSA(&twosA, &ones, ones, xnor256(A[i], B[i]), xnor256(A[i + 1], B[i + 1])); + CSA(&twosB, &ones, ones, xnor256(A[i + 2], B[i + 2]), xnor256(A[i + 3], B[i + 3])); + CSA(&foursA, &twos, twos, twosA, twosB); + CSA(&twosA, &ones, ones, xnor256(A[i + 4], B[i + 4]), xnor256(A[i + 5], B[i + 5])); + CSA(&twosB, &ones, ones, xnor256(A[i + 6], B[i + 6]), xnor256(A[i + 7], B[i + 7])); + CSA(&foursB, &twos, twos, twosA, twosB); + CSA(&eightsA, &fours, fours, foursA, foursB); + CSA(&twosA, &ones, ones, xnor256(A[i + 8], B[i + 8]), xnor256(A[i + 9], B[i + 9])); + CSA(&twosB, &ones, ones, xnor256(A[i + 10], B[i + 10]), xnor256(A[i + 11], B[i + 11])); + CSA(&foursA, &twos, twos, twosA, twosB); + CSA(&twosA, &ones, ones, xnor256(A[i + 12], B[i + 12]), xnor256(A[i + 13], B[i + 13])); + CSA(&twosB, &ones, ones, xnor256(A[i + 14], B[i + 14]), xnor256(A[i + 15], B[i + 15])); + CSA(&foursB, &twos, twos, twosA, twosB); + CSA(&eightsB, &fours, fours, foursA, foursB); + CSA(&sixteens, &eights, eights, eightsA, eightsB); + + total = _mm256_add_epi64(total, count256(sixteens)); + } + total = _mm256_slli_epi64(total, 4); + total = _mm256_add_epi64(total, + _mm256_slli_epi64(count256(eights), 3)); + total = _mm256_add_epi64(total, + _mm256_slli_epi64(count256(fours), 2)); + total = _mm256_add_epi64(total, + _mm256_slli_epi64(count256(twos), 1)); + total = _mm256_add_epi64(total, count256(ones)); + + return total.m256i_i64[0] + + total.m256i_i64[1] + + total.m256i_i64[2] + + total.m256i_i64[3]; + + //return _mm256_extract_epi64(total, 0) + // + _mm256_extract_epi64(total, 1) + // + _mm256_extract_epi64(total, 2) + // + _mm256_extract_epi64(total, 3); +} + +void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, + unsigned char *A, int lda, + unsigned char *B, int ldb, + float *C, int ldc, float *mean_arr) +{ + __m256i all_1 = _mm256_set1_epi8(255); + int i, j, k; + + //printf("\n M = %d, N = %d, K = %d, ldb = %d, M*ldb/8 = %d, N*ldb/8= %d \n", M, N, K, ldb, M*ldb/8, N*ldb/8); + //if (K > 4096) printf("!!!avx_hs!!! \n\n"); + + #pragma omp parallel for + for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] + float mean_val = mean_arr[i]; + + for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] + int count = 0; + const int bit_step = 256; + + + int hs_count = 0; + if (K > 4096) { + hs_count = avx_hs_custom(A + (i*lda) / 8, B + (j*ldb) / 8, K / 256); + + int local_bit_step = 4096; + + int f1 = (K % local_bit_step == 0) ? 0 : (local_bit_step - (K % local_bit_step)); + hs_count = hs_count - f1; // remove extra bits + count = hs_count; + } + else { + for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216] + + //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8)); + //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8)); + //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128); + //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1); + //int tmp_count = popcnt128(c_bit128); + + __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8)); + __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8)); + __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); + __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT + int tmp_count = popcnt256(c_bit256); + //int tmp_count = popcnt256_custom(c_bit256); + count += tmp_count; + + //binary_int64_printf(c_bit64); + //printf(", count = %d \n\n", tmp_count); + } + + int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step)); + count = count - f1; // remove extra bits + } + + C[i*ldc + j] = (2 * count - K) * mean_val; + } + } +} + + +void float_to_bit(float *src, unsigned char *dst, size_t size) +{ + size_t dst_size = size / 8 + 1; + memset(dst, 0, dst_size); + + size_t i; + __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); + + for (i = 0; i < size; i+=8) + { + __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); + __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats + + uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 + mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 + + dst[i / 8] = mask; + } +} + +#else + +void gemm_nn(int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i, j, k; + for (i = 0; i < M; ++i) { + for (k = 0; k < K; ++k) { + register float A_PART = ALPHA*A[i*lda + k]; + for (j = 0; j < N; ++j) { + C[i*ldc + j] += A_PART*B[k*ldb + j]; + } + } + } +} + +void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, + unsigned char *A, int lda, + unsigned char *B, int ldb, + float *C, int ldc, float *mean_arr) +{ + int i, j, k, h; + +#pragma omp parallel for + for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] + float mean_val = mean_arr[i]; + + for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] + int count = 0; + + for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] + uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); + uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); + uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); + +#ifdef WIN32 + int tmp_count = __popcnt64(c_bit64); +#else + int tmp_count = __builtin_popcountll(c_bit64); +#endif + + if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits + count += tmp_count; + //binary_int64_printf(c_bit64); + //printf(", count = %d \n\n", tmp_count); + } + + C[i*ldc + j] = (2 * count - K) * mean_val; + } + } +} + +void float_to_bit(float *src, unsigned char *dst, size_t size) +{ + size_t dst_size = size / 8 + 1; + memset(dst, 0, dst_size); + + size_t i; + char *byte_arr = calloc(size, sizeof(char)); + for (i = 0; i < size; ++i) { + if (src[i] > 0) byte_arr[i] = 1; + } + + //for (i = 0; i < size; ++i) { + // dst[i / 8] |= byte_arr[i] << (i % 8); + //} + + for (i = 0; i < size; i += 8) { + char dst_tmp = 0; + dst_tmp |= byte_arr[i + 0] << 0; + dst_tmp |= byte_arr[i + 1] << 1; + dst_tmp |= byte_arr[i + 2] << 2; + dst_tmp |= byte_arr[i + 3] << 3; + dst_tmp |= byte_arr[i + 4] << 4; + dst_tmp |= byte_arr[i + 5] << 5; + dst_tmp |= byte_arr[i + 6] << 6; + dst_tmp |= byte_arr[i + 7] << 7; + dst[i / 8] = dst_tmp; + } + free(byte_arr); +} +#endif // __x86_64 + +void gemm_nt(int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i,j,k; + for(i = 0; i < M; ++i){ + for(j = 0; j < N; ++j){ + register float sum = 0; + for(k = 0; k < K; ++k){ + sum += ALPHA*A[i*lda+k]*B[j*ldb + k]; + } + C[i*ldc+j] += sum; + } + } +} + +void gemm_tn(int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i,j,k; + for(i = 0; i < M; ++i){ + for(k = 0; k < K; ++k){ + register float A_PART = ALPHA*A[k*lda+i]; + for(j = 0; j < N; ++j){ + C[i*ldc+j] += A_PART*B[k*ldb+j]; + } + } + } +} + +void gemm_tt(int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i,j,k; + for(i = 0; i < M; ++i){ + for(j = 0; j < N; ++j){ + register float sum = 0; + for(k = 0; k < K; ++k){ + sum += ALPHA*A[i+k*lda]*B[k+j*ldb]; + } + C[i*ldc+j] += sum; + } + } +} + + +void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float BETA, + float *C, int ldc) +{ + //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); + if (BETA != 1){ + int i, j; + for(i = 0; i < M; ++i){ + for(j = 0; j < N; ++j){ + C[i*ldc + j] *= BETA; + } + } + } + + int t; + #pragma omp parallel for + for (t = 0; t < M; ++t) { + if (!TA && !TB) + gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); + else if (TA && !TB) + gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); + else if (!TA && TB) + gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); + else + gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); + } +} + +#ifdef GPU + +#include + +void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, + float *A_gpu, int lda, + float *B_gpu, int ldb, + float BETA, + float *C_gpu, int ldc) +{ + cublasHandle_t handle = blas_handle(); + cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream()); + cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), + (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); + check_error(status); +} + +void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float BETA, + float *C, int ldc) +{ + float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); + float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); + float *C_gpu = cuda_make_array(C, ldc*M); + + gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); + + cuda_pull_array(C_gpu, C, ldc*M); + cuda_free(A_gpu); + cuda_free(B_gpu); + cuda_free(C_gpu); +} + +#include +#include +#include +#include + +void time_gpu_random_matrix(int TA, int TB, int m, int k, int n) +{ + float *a; + if(!TA) a = random_matrix(m,k); + else a = random_matrix(k,m); + int lda = (!TA)?k:m; + float *b; + if(!TB) b = random_matrix(k,n); + else b = random_matrix(n,k); + int ldb = (!TB)?n:k; + + float *c = random_matrix(m,n); + int i; + clock_t start = clock(), end; + for(i = 0; i<32; ++i){ + gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); + } + end = clock(); + printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); + free(a); + free(b); + free(c); +} + +void time_ongpu(int TA, int TB, int m, int k, int n) +{ + int iter = 10; + float *a = random_matrix(m,k); + float *b = random_matrix(k,n); + + int lda = (!TA)?k:m; + int ldb = (!TB)?n:k; + + float *c = random_matrix(m,n); + + float *a_cl = cuda_make_array(a, m*k); + float *b_cl = cuda_make_array(b, k*n); + float *c_cl = cuda_make_array(c, m*n); + + int i; + clock_t start = clock(), end; + for(i = 0; i b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c); fill_cpu(c.w*c.h*c.c, 1, c.data, 1); - embed_image(a, c, 0, 0); + embed_image(a, c, 0, 0); composite_image(b, c, a.w + dx, 0); return c; } @@ -267,7 +267,7 @@ int compare_by_lefts(const void *a_ptr, const void *b_ptr) { return delta < 0 ? -1 : delta > 0 ? 1 : 0; } -// compare to sort detection** by best_class probability +// compare to sort detection** by best_class probability int compare_by_probs(const void *a_ptr, const void *b_ptr) { const detection_with_class* a = (detection_with_class*)a_ptr; const detection_with_class* b = (detection_with_class*)b_ptr; @@ -421,7 +421,7 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs, if(top < 0) top = 0; if(bot > im.h-1) bot = im.h-1; printf("%s: %.0f%%", names[class_id], prob * 100); - + //printf(" - id: %d, x_center: %d, y_center: %d, width: %d, height: %d", // class_id, (right + left) / 2, (bot - top) / 2, right - left, bot - top); @@ -481,6 +481,10 @@ void draw_detections_cv_v3(IplImage* show_img, detection *dets, int num, float t rgb[1] = green; rgb[2] = blue; box b = dets[i].bbox; + b.w = (b.w < 1) ? b.w : 1; + b.h = (b.h < 1) ? b.h : 1; + b.x = (b.x < 1) ? b.x : 1; + b.y = (b.y < 1) ? b.y : 1; //printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); int left = (b.x - b.w / 2.)*show_img->width; @@ -535,10 +539,11 @@ void draw_detections_cv_v3(IplImage* show_img, detection *dets, int num, float t cvRectangle(show_img, pt1, pt2, color, width, 8, 0); if (ext_output) - printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", + printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", (float)left, (float)top, b.w*show_img->width, b.h*show_img->height); else printf("\n"); + cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0); cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled CvScalar black_color; @@ -617,7 +622,7 @@ void draw_detections_cv(IplImage* show_img, int num, float thresh, box *boxes, f CvScalar black_color; black_color.val[0] = 0; CvFont font; - cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); + cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); cvPutText(show_img, names[class_id], pt_text, &font, black_color); } } @@ -881,7 +886,7 @@ void show_image_cv(image p, const char *name) IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); int step = disp->widthStep; - cvNamedWindow(buff, CV_WINDOW_NORMAL); + cvNamedWindow(buff, CV_WINDOW_NORMAL); //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); ++windows; for(y = 0; y < p.h; ++y){ @@ -1057,7 +1062,7 @@ image get_image_from_stream_resize(CvCapture *cap, int w, int h, int c, IplImage } else src = cvQueryFrame(cap); - if (cpp_video_capture) + if (cpp_video_capture) if(!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0); IplImage* new_img = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, c); *in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c); @@ -1588,7 +1593,7 @@ image blend_image(image fore, image back, float alpha) for(k = 0; k < fore.c; ++k){ for(j = 0; j < fore.h; ++j){ for(i = 0; i < fore.w; ++i){ - float val = alpha * get_pixel(fore, i, j, k) + + float val = alpha * get_pixel(fore, i, j, k) + (1 - alpha)* get_pixel(back, i, j, k); set_pixel(blend, i, j, k, val); } @@ -1708,8 +1713,8 @@ float bilinear_interpolate(image im, float x, float y, int c) float dx = x - ix; float dy = y - iy; - float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + - dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + + float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + + dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + dy * dx * get_pixel_extend(im, ix+1, iy+1, c); return val; @@ -1717,7 +1722,7 @@ float bilinear_interpolate(image im, float x, float y, int c) image resize_image(image im, int w, int h) { - image resized = make_image(w, h, im.c); + image resized = make_image(w, h, im.c); image part = make_image(w, im.h, im.c); int r, c, k; float w_scale = (float)(im.w - 1) / (w - 1); @@ -1931,7 +1936,7 @@ image collapse_images_vert(image *ims, int n) free_image(copy); } return filters; -} +} image collapse_images_horz(image *ims, int n) { @@ -1967,7 +1972,7 @@ image collapse_images_horz(image *ims, int n) free_image(copy); } return filters; -} +} void show_image_normalized(image im, const char *name) { diff --git a/src/network.c b/src/network.c index 63b76a8b..a62f6d0f 100644 --- a/src/network.c +++ b/src/network.c @@ -862,6 +862,8 @@ void calculate_binary_weights(network net) if (l->xnor) { //printf("\n %d \n", j); size_t ldb_align = 256; // 256bit for AVX2 + if (l->size*l->size*l->c > 4096) ldb_align = 4096; + binary_transpose_align_weights(l, ldb_align); } }