From a63782ca8937f412e943b6c841a5671ce39c60fc Mon Sep 17 00:00:00 2001 From: AlexeyAB Date: Mon, 2 Sep 2019 15:55:05 +0300 Subject: [PATCH] Added: efficientnet_b0.cfg --- build/darknet/x64/cfg/efficientnet_b0.cfg | 1005 +++++++++++++++++++++ cfg/efficientnet_b0.cfg | 1005 +++++++++++++++++++++ 2 files changed, 2010 insertions(+) create mode 100644 build/darknet/x64/cfg/efficientnet_b0.cfg create mode 100644 cfg/efficientnet_b0.cfg diff --git a/build/darknet/x64/cfg/efficientnet_b0.cfg b/build/darknet/x64/cfg/efficientnet_b0.cfg new file mode 100644 index 00000000..3bd3e895 --- /dev/null +++ b/build/darknet/x64/cfg/efficientnet_b0.cfg @@ -0,0 +1,1005 @@ +[net] +# Training +batch=120 +subdivisions=4 +# Testing +#batch=1 +#subdivisions=1 +height=224 +width=224 +channels=3 +momentum=0.9 +decay=0.0005 +max_crop=256 + +burn_in=1000 +#burn_in=100 +learning_rate=0.256 +policy=poly +power=4 +max_batches=800000 +momentum=0.9 +decay=0.00005 + +angle=7 +hue=.1 +saturation=.75 +exposure=.75 +aspect=.75 + + +### CONV1 - 1 (1) +# conv1 +[convolutional] +filters=32 +size=3 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +### CONV2 - MBConv1 - 1 (1) +# conv2_1_expand +[convolutional] +filters=32 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv2_1_dwise +[convolutional] +groups=32 +filters=32 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=4 (recommended r=16) +[convolutional] +filters=8 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=32 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv2_1_linear +[convolutional] +filters=16 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV3 - MBConv6 - 1 (2) +# conv2_2_expand +[convolutional] +filters=96 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv2_2_dwise +[convolutional] +groups=96 +filters=96 +size=3 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=8 (recommended r=16) +[convolutional] +filters=16 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=96 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv2_2_linear +[convolutional] +filters=24 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV3 - MBConv6 - 2 (2) +# conv3_1_expand +[convolutional] +filters=144 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv3_1_dwise +[convolutional] +groups=144 +filters=144 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=8 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=144 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv3_1_linear +[convolutional] +filters=24 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV4 - MBConv6 - 1 (2) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_3_1 +[shortcut] +from=-9 +activation=linear + +# conv_3_2_expand +[convolutional] +filters=144 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_3_2_dwise +[convolutional] +groups=144 +filters=144 +size=5 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=8 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=144 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_3_2_linear +[convolutional] +filters=40 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV4 - MBConv6 - 2 (2) +# conv_4_1_expand +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_1_dwise +[convolutional] +groups=192 +filters=192 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=16 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=192 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_1_linear +[convolutional] +filters=40 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + + +### CONV5 - MBConv6 - 1 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_4_2 +[shortcut] +from=-9 +activation=linear + +# conv_4_3_expand +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_3_dwise +[convolutional] +groups=192 +filters=192 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=16 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=192 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_3_linear +[convolutional] +filters=80 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV5 - MBConv6 - 2 (3) +# conv_4_4_expand +[convolutional] +filters=384 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_4_dwise +[convolutional] +groups=384 +filters=384 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=24 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=384 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_4_linear +[convolutional] +filters=80 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV5 - MBConv6 - 3 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_4_4 +[shortcut] +from=-9 +activation=linear + +# conv_4_5_expand +[convolutional] +filters=384 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_5_dwise +[convolutional] +groups=384 +filters=384 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=24 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=384 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_5_linear +[convolutional] +filters=80 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV6 - MBConv6 - 1 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_4_6 +[shortcut] +from=-9 +activation=linear + +# conv_4_7_expand +[convolutional] +filters=384 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_7_dwise +[convolutional] +groups=384 +filters=384 +size=5 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=24 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=384 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_7_linear +[convolutional] +filters=112 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV6 - MBConv6 - 2 (3) +# conv_5_1_expand +[convolutional] +filters=576 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_5_1_dwise +[convolutional] +groups=576 +filters=576 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=32 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=576 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_5_1_linear +[convolutional] +filters=112 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV6 - MBConv6 - 3 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_5_1 +[shortcut] +from=-9 +activation=linear + +# conv_5_2_expand +[convolutional] +filters=576 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_5_2_dwise +[convolutional] +groups=576 +filters=576 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=32 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=576 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_5_2_linear +[convolutional] +filters=112 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 1 (4) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_5_2 +[shortcut] +from=-9 +activation=linear + +# conv_5_3_expand +[convolutional] +filters=576 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_5_3_dwise +[convolutional] +groups=576 +filters=576 +size=5 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=32 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=576 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_5_3_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 2 (4) +# conv_6_1_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_1_dwise +[convolutional] +groups=960 +filters=960 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_1_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 3 (4) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_6_1 +[shortcut] +from=-9 +activation=linear + +# conv_6_2_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_2_dwise +[convolutional] +groups=960 +filters=960 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_2_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 4 (4) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_6_1 +[shortcut] +from=-9 +activation=linear + +# conv_6_2_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_2_dwise +[convolutional] +groups=960 +filters=960 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_2_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV8 - MBConv6 - 1 (1) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_6_2 +[shortcut] +from=-9 +activation=linear + +# conv_6_3_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_3_dwise +[convolutional] +groups=960 +filters=960 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_3_linear +[convolutional] +filters=320 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV9 - Conv2d 1x1 +# conv_6_4 +[convolutional] +filters=1280 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + + +[avgpool] + +[dropout] +probability=.2 + +[convolutional] +filters=1000 +size=1 +stride=1 +pad=0 +activation=linear + +[softmax] +groups=1 + +#[cost] +#type=sse + diff --git a/cfg/efficientnet_b0.cfg b/cfg/efficientnet_b0.cfg new file mode 100644 index 00000000..3bd3e895 --- /dev/null +++ b/cfg/efficientnet_b0.cfg @@ -0,0 +1,1005 @@ +[net] +# Training +batch=120 +subdivisions=4 +# Testing +#batch=1 +#subdivisions=1 +height=224 +width=224 +channels=3 +momentum=0.9 +decay=0.0005 +max_crop=256 + +burn_in=1000 +#burn_in=100 +learning_rate=0.256 +policy=poly +power=4 +max_batches=800000 +momentum=0.9 +decay=0.00005 + +angle=7 +hue=.1 +saturation=.75 +exposure=.75 +aspect=.75 + + +### CONV1 - 1 (1) +# conv1 +[convolutional] +filters=32 +size=3 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +### CONV2 - MBConv1 - 1 (1) +# conv2_1_expand +[convolutional] +filters=32 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv2_1_dwise +[convolutional] +groups=32 +filters=32 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=4 (recommended r=16) +[convolutional] +filters=8 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=32 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv2_1_linear +[convolutional] +filters=16 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV3 - MBConv6 - 1 (2) +# conv2_2_expand +[convolutional] +filters=96 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv2_2_dwise +[convolutional] +groups=96 +filters=96 +size=3 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=8 (recommended r=16) +[convolutional] +filters=16 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=96 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv2_2_linear +[convolutional] +filters=24 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV3 - MBConv6 - 2 (2) +# conv3_1_expand +[convolutional] +filters=144 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv3_1_dwise +[convolutional] +groups=144 +filters=144 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=8 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=144 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv3_1_linear +[convolutional] +filters=24 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV4 - MBConv6 - 1 (2) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_3_1 +[shortcut] +from=-9 +activation=linear + +# conv_3_2_expand +[convolutional] +filters=144 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_3_2_dwise +[convolutional] +groups=144 +filters=144 +size=5 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=8 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=144 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_3_2_linear +[convolutional] +filters=40 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV4 - MBConv6 - 2 (2) +# conv_4_1_expand +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_1_dwise +[convolutional] +groups=192 +filters=192 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=16 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=192 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_1_linear +[convolutional] +filters=40 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + + +### CONV5 - MBConv6 - 1 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_4_2 +[shortcut] +from=-9 +activation=linear + +# conv_4_3_expand +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_3_dwise +[convolutional] +groups=192 +filters=192 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=16 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=192 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_3_linear +[convolutional] +filters=80 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV5 - MBConv6 - 2 (3) +# conv_4_4_expand +[convolutional] +filters=384 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_4_dwise +[convolutional] +groups=384 +filters=384 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=24 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=384 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_4_linear +[convolutional] +filters=80 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV5 - MBConv6 - 3 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_4_4 +[shortcut] +from=-9 +activation=linear + +# conv_4_5_expand +[convolutional] +filters=384 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_5_dwise +[convolutional] +groups=384 +filters=384 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=24 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=384 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_5_linear +[convolutional] +filters=80 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV6 - MBConv6 - 1 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_4_6 +[shortcut] +from=-9 +activation=linear + +# conv_4_7_expand +[convolutional] +filters=384 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_4_7_dwise +[convolutional] +groups=384 +filters=384 +size=5 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=24 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=384 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_4_7_linear +[convolutional] +filters=112 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV6 - MBConv6 - 2 (3) +# conv_5_1_expand +[convolutional] +filters=576 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_5_1_dwise +[convolutional] +groups=576 +filters=576 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=32 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=576 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_5_1_linear +[convolutional] +filters=112 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV6 - MBConv6 - 3 (3) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_5_1 +[shortcut] +from=-9 +activation=linear + +# conv_5_2_expand +[convolutional] +filters=576 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_5_2_dwise +[convolutional] +groups=576 +filters=576 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=32 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=576 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_5_2_linear +[convolutional] +filters=112 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 1 (4) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_5_2 +[shortcut] +from=-9 +activation=linear + +# conv_5_3_expand +[convolutional] +filters=576 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_5_3_dwise +[convolutional] +groups=576 +filters=576 +size=5 +pad=1 +stride=2 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=32 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=576 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_5_3_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 2 (4) +# conv_6_1_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_1_dwise +[convolutional] +groups=960 +filters=960 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_1_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 3 (4) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_6_1 +[shortcut] +from=-9 +activation=linear + +# conv_6_2_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_2_dwise +[convolutional] +groups=960 +filters=960 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_2_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV7 - MBConv6 - 4 (4) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_6_1 +[shortcut] +from=-9 +activation=linear + +# conv_6_2_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_2_dwise +[convolutional] +groups=960 +filters=960 +size=5 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_2_linear +[convolutional] +filters=192 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + + +### CONV8 - MBConv6 - 1 (1) +# dropout only before residual connection +[dropout] +probability=.2 + +# block_6_2 +[shortcut] +from=-9 +activation=linear + +# conv_6_3_expand +[convolutional] +filters=960 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + +# conv_6_3_dwise +[convolutional] +groups=960 +filters=960 +size=3 +stride=1 +pad=1 +batch_normalize=1 +activation=swish + + +#squeeze-n-excitation +[avgpool] + +# squeeze ratio r=16 (recommended r=16) +[convolutional] +filters=64 +size=1 +stride=1 +activation=swish + +# excitation +[convolutional] +filters=960 +size=1 +stride=1 +activation=logistic + +# multiply channels +[scale_channels] +from=-4 + + +# conv_6_3_linear +[convolutional] +filters=320 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=linear + + +### CONV9 - Conv2d 1x1 +# conv_6_4 +[convolutional] +filters=1280 +size=1 +stride=1 +pad=0 +batch_normalize=1 +activation=swish + + +[avgpool] + +[dropout] +probability=.2 + +[convolutional] +filters=1000 +size=1 +stride=1 +pad=0 +activation=linear + +[softmax] +groups=1 + +#[cost] +#type=sse +