mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added support DLL (dynamic link library) - yolo_cpp_dll.dll
This commit is contained in:
165
src/yolo_v2_class.cpp
Normal file
165
src/yolo_v2_class.cpp
Normal file
@ -0,0 +1,165 @@
|
||||
#include "yolo_v2_class.hpp"
|
||||
|
||||
|
||||
#include "network.h"
|
||||
|
||||
extern "C" {
|
||||
#include "detection_layer.h"
|
||||
#include "region_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "box.h"
|
||||
#include "image.h"
|
||||
#include "demo.h"
|
||||
|
||||
#include "option_list.h"
|
||||
|
||||
}
|
||||
//#include <sys/time.h>
|
||||
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
#define FRAMES 3
|
||||
#define ROI_PER_DETECTOR 100
|
||||
|
||||
|
||||
struct detector_gpu_t{
|
||||
float **probs;
|
||||
box *boxes;
|
||||
network net;
|
||||
//image det;
|
||||
//image det_s;
|
||||
image images[FRAMES];
|
||||
float *avg;
|
||||
float *predictions[FRAMES];
|
||||
};
|
||||
|
||||
|
||||
|
||||
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id)
|
||||
{
|
||||
int old_gpu_index;
|
||||
cudaGetDevice(&old_gpu_index);
|
||||
|
||||
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
|
||||
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
|
||||
cudaSetDevice(gpu_id);
|
||||
network &net = detector_gpu.net;
|
||||
net.gpu_index = gpu_id;
|
||||
//gpu_index = i;
|
||||
|
||||
char *cfgfile = const_cast<char *>(cfg_filename.data());
|
||||
char *weightfile = const_cast<char *>(weight_filename.data());
|
||||
|
||||
net = parse_network_cfg(cfgfile);
|
||||
if (weightfile) {
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
net.gpu_index = gpu_id;
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
int j;
|
||||
|
||||
detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
|
||||
for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
|
||||
for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
|
||||
|
||||
detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
|
||||
detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
|
||||
|
||||
cudaSetDevice(old_gpu_index);
|
||||
}
|
||||
|
||||
YOLODLL_API Detector::~Detector()
|
||||
{
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
|
||||
|
||||
free(detector_gpu.boxes);
|
||||
free(detector_gpu.avg);
|
||||
free(detector_gpu.predictions);
|
||||
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
|
||||
free(detector_gpu.probs);
|
||||
}
|
||||
|
||||
|
||||
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
|
||||
{
|
||||
char *input = const_cast<char *>(image_filename.data());
|
||||
image im = load_image_color(input, 0, 0);
|
||||
|
||||
image_t img;
|
||||
img.c = im.c;
|
||||
img.data = im.data;
|
||||
img.h = im.h;
|
||||
img.w = im.w;
|
||||
|
||||
return detect(img, thresh);
|
||||
}
|
||||
|
||||
|
||||
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
||||
{
|
||||
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
network &net = detector_gpu.net;
|
||||
int old_gpu_index;
|
||||
cudaGetDevice(&old_gpu_index);
|
||||
cudaSetDevice(net.gpu_index);
|
||||
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
|
||||
|
||||
float nms = .4;
|
||||
|
||||
image im;
|
||||
im.c = img.c;
|
||||
im.data = img.data;
|
||||
im.h = img.h;
|
||||
im.w = img.w;
|
||||
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
layer l = net.layers[net.n - 1];
|
||||
|
||||
//box *boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
|
||||
//float **probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
// (int j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
|
||||
|
||||
float *X = sized.data;
|
||||
|
||||
network_predict(net, X);
|
||||
|
||||
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
|
||||
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
|
||||
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
|
||||
|
||||
std::vector<bbox_t> bbox_vec;
|
||||
|
||||
for (size_t i = 0; i < (l.w*l.h*l.n); ++i) {
|
||||
box b = detector_gpu.boxes[i];
|
||||
int const obj_id = max_index(detector_gpu.probs[i], l.classes);
|
||||
float const prob = detector_gpu.probs[i][obj_id];
|
||||
|
||||
if (prob > thresh)
|
||||
{
|
||||
bbox_t bbox;
|
||||
bbox.x = (b.x - b.w / 2.)*im.w;
|
||||
bbox.y = (b.y - b.h / 2.)*im.h;
|
||||
bbox.w = b.w*im.w;
|
||||
bbox.h = b.h*im.h;
|
||||
bbox.obj_id = obj_id;
|
||||
bbox.prob = prob;
|
||||
|
||||
bbox_vec.push_back(bbox);
|
||||
}
|
||||
}
|
||||
|
||||
cudaSetDevice(old_gpu_index);
|
||||
|
||||
return bbox_vec;
|
||||
}
|
Reference in New Issue
Block a user