this'll teach me to mess with maxpooling

This commit is contained in:
Joseph Redmon
2018-08-03 15:57:48 -07:00
parent e209b3bbbf
commit b13f67bfdd
23 changed files with 737 additions and 130 deletions

View File

@ -24,7 +24,6 @@ void demo_art(char *cfgfile, char *weightfile, int cam_index)
while(1){
image in = get_image_from_stream(cap);
image in_s = resize_image(in, net->w, net->h);
show_image(in, window);
float *p = network_predict(net, in_s.data);
@ -45,10 +44,9 @@ void demo_art(char *cfgfile, char *weightfile, int cam_index)
}
printf("]\n");
show_image(in, window, 1);
free_image(in_s);
free_image(in);
cvWaitKey(1);
}
#endif
}

View File

@ -645,6 +645,45 @@ void label_classifier(char *datacfg, char *filename, char *weightfile)
}
}
void csv_classifier(char *datacfg, char *cfgfile, char *weightfile)
{
int i,j;
network *net = load_network(cfgfile, weightfile, 0);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *test_list = option_find_str(options, "test", "data/test.list");
int top = option_find_int(options, "top", 1);
list *plist = get_paths(test_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
int *indexes = calloc(top, sizeof(int));
for(i = 0; i < m; ++i){
double time = what_time_is_it_now();
char *path = paths[i];
image im = load_image_color(path, 0, 0);
image r = letterbox_image(im, net->w, net->h);
float *predictions = network_predict(net, r.data);
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
top_k(predictions, net->outputs, top, indexes);
printf("%s", path);
for(j = 0; j < top; ++j){
printf("\t%d", indexes[j]);
}
printf("\n");
free_image(im);
free_image(r);
fprintf(stderr, "%lf seconds, %d images, %d total\n", what_time_is_it_now() - time, i+1, m);
}
}
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
{
@ -869,8 +908,7 @@ void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_i
}
if(1){
show_image(out, "Threat");
cvWaitKey(10);
show_image(out, "Threat", 10);
}
free_image(in_s);
free_image(in);
@ -922,7 +960,6 @@ void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
image in = get_image_from_stream(cap);
image in_s = resize_image(in, net->w, net->h);
show_image(in, "Threat Detection");
float *predictions = network_predict(net, in_s.data);
top_predictions(net, top, indexes);
@ -947,11 +984,10 @@ void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
}
}
show_image(in, "Threat Detection", 10);
free_image(in_s);
free_image(in);
cvWaitKey(10);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
@ -1036,12 +1072,10 @@ void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_ind
free_image(label);
}
show_image(in, base);
show_image(in, base, 10);
free_image(in_s);
free_image(in);
cvWaitKey(10);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
@ -1080,6 +1114,7 @@ void run_classifier(int argc, char **argv)
else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
else if(0==strcmp(argv[2], "csv")) csv_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);

View File

@ -325,14 +325,10 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80);
save_image(im, "prediction");
show_image(im, "predictions");
show_image(im, "predictions", 0);
free_detections(dets, nboxes);
free_image(im);
free_image(sized);
#ifdef OPENCV
cvWaitKey(0);
cvDestroyAllWindows();
#endif
if (filename) break;
}
}

View File

@ -14,6 +14,7 @@ extern void run_nightmare(int argc, char **argv);
extern void run_classifier(int argc, char **argv);
extern void run_regressor(int argc, char **argv);
extern void run_segmenter(int argc, char **argv);
extern void run_isegmenter(int argc, char **argv);
extern void run_char_rnn(int argc, char **argv);
extern void run_tag(int argc, char **argv);
extern void run_cifar(int argc, char **argv);
@ -452,6 +453,8 @@ int main(int argc, char **argv)
run_classifier(argc, argv);
} else if (0 == strcmp(argv[1], "regressor")){
run_regressor(argc, argv);
} else if (0 == strcmp(argv[1], "isegmenter")){
run_isegmenter(argc, argv);
} else if (0 == strcmp(argv[1], "segmenter")){
run_segmenter(argc, argv);
} else if (0 == strcmp(argv[1], "art")){

View File

@ -613,9 +613,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
if(fullscreen){
cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
}
show_image(im, "predictions");
cvWaitKey(0);
cvDestroyAllWindows();
show_image(im, "predictions", 0);
#endif
}

View File

@ -0,0 +1,265 @@
#include "darknet.h"
#include <sys/time.h>
#include <assert.h>
void train_isegmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int display)
{
int i;
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
printf("%d\n", ngpus);
network **nets = calloc(ngpus, sizeof(network*));
srand(time(0));
int seed = rand();
for(i = 0; i < ngpus; ++i){
srand(seed);
#ifdef GPU
cuda_set_device(gpus[i]);
#endif
nets[i] = load_network(cfgfile, weightfile, clear);
nets[i]->learning_rate *= ngpus;
}
srand(time(0));
network *net = nets[0];
image pred = get_network_image(net);
int div = net->w/pred.w;
assert(pred.w * div == net->w);
assert(pred.h * div == net->h);
int imgs = net->batch * net->subdivisions * ngpus;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
list *options = read_data_cfg(datacfg);
char *backup_directory = option_find_str(options, "backup", "/backup/");
char *train_list = option_find_str(options, "train", "data/train.list");
list *plist = get_paths(train_list);
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
int N = plist->size;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.threads = 32;
args.scale = div;
args.num_boxes = 90;
args.min = net->min_crop;
args.max = net->max_crop;
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.classes = 80;
args.paths = paths;
args.n = imgs;
args.m = N;
args.type = ISEG_DATA;
data train;
data buffer;
pthread_t load_thread;
args.d = &buffer;
load_thread = load_data(args);
int epoch = (*net->seen)/N;
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
double time = what_time_is_it_now();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data(args);
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
time = what_time_is_it_now();
float loss = 0;
#ifdef GPU
if(ngpus == 1){
loss = train_network(net, train);
} else {
loss = train_networks(nets, ngpus, train, 4);
}
#else
loss = train_network(net, train);
#endif
if(display){
image tr = float_to_image(net->w/div, net->h/div, 80, train.y.vals[net->batch*(net->subdivisions-1)]);
image im = float_to_image(net->w, net->h, net->c, train.X.vals[net->batch*(net->subdivisions-1)]);
pred.c = 80;
image mask = mask_to_rgb(tr);
image prmask = mask_to_rgb(pred);
show_image(im, "input", 1);
show_image(prmask, "pred", 1);
show_image(mask, "truth", 100);
free_image(mask);
free_image(prmask);
}
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
free_data(train);
if(*net->seen/N > epoch){
epoch = *net->seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
if(get_current_batch(net)%100 == 0){
char buff[256];
sprintf(buff, "%s/%s.backup",backup_directory,base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s.weights", backup_directory, base);
save_weights(net, buff);
free_network(net);
free_ptrs((void**)paths, plist->size);
free_list(plist);
free(base);
}
void predict_isegmenter(char *datafile, char *cfg, char *weights, char *filename)
{
network *net = load_network(cfg, weights, 0);
set_batch_network(net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
image sized = letterbox_image(im, net->w, net->h);
float *X = sized.data;
time=clock();
float *predictions = network_predict(net, X);
image pred = get_network_image(net);
image prmask = mask_to_rgb(pred);
printf("Predicted: %f\n", predictions[0]);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
show_image(sized, "orig", 1);
show_image(prmask, "pred", 0);
free_image(im);
free_image(sized);
free_image(prmask);
if (filename) break;
}
}
void demo_isegmenter(char *datacfg, char *cfg, char *weights, int cam_index, const char *filename)
{
#ifdef OPENCV
printf("Classifier Demo\n");
network *net = load_network(cfg, weights, 0);
set_batch_network(net, 1);
srand(2222222);
CvCapture * cap;
if(filename){
cap = cvCaptureFromFile(filename);
}else{
cap = cvCaptureFromCAM(cam_index);
}
if(!cap) error("Couldn't connect to webcam.\n");
cvNamedWindow("Segmenter", CV_WINDOW_NORMAL);
cvResizeWindow("Segmenter", 512, 512);
float fps = 0;
while(1){
struct timeval tval_before, tval_after, tval_result;
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
image in_s = letterbox_image(in, net->w, net->h);
network_predict(net, in_s.data);
printf("\033[2J");
printf("\033[1;1H");
printf("\nFPS:%.0f\n",fps);
image pred = get_network_image(net);
image prmask = mask_to_rgb(pred);
show_image(prmask, "Segmenter", 10);
free_image(in_s);
free_image(in);
free_image(prmask);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
fps = .9*fps + .1*curr;
}
#endif
}
void run_isegmenter(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
int *gpus = 0;
int gpu = 0;
int ngpus = 0;
if(gpu_list){
printf("%s\n", gpu_list);
int len = strlen(gpu_list);
ngpus = 1;
int i;
for(i = 0; i < len; ++i){
if (gpu_list[i] == ',') ++ngpus;
}
gpus = calloc(ngpus, sizeof(int));
for(i = 0; i < ngpus; ++i){
gpus[i] = atoi(gpu_list);
gpu_list = strchr(gpu_list, ',')+1;
}
} else {
gpu = gpu_index;
gpus = &gpu;
ngpus = 1;
}
int cam_index = find_int_arg(argc, argv, "-c", 0);
int clear = find_arg(argc, argv, "-clear");
int display = find_arg(argc, argv, "-display");
char *data = argv[3];
char *cfg = argv[4];
char *weights = (argc > 5) ? argv[5] : 0;
char *filename = (argc > 6) ? argv[6]: 0;
if(0==strcmp(argv[2], "test")) predict_isegmenter(data, cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_isegmenter(data, cfg, weights, gpus, ngpus, clear, display);
else if(0==strcmp(argv[2], "demo")) demo_isegmenter(data, cfg, weights, cam_index, filename);
}

View File

@ -460,13 +460,9 @@ void inter_dcgan(char *cfgfile, char *weightfile)
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
//char buff[256];
sprintf(buff, "out%05d", c);
show_image(out, "out");
save_image(out, "out");
save_image(out, buff);
#ifdef OPENCV
//cvWaitKey(0);
#endif
show_image(out, "out", 0);
}
}
@ -499,11 +495,8 @@ void test_dcgan(char *cfgfile, char *weightfile)
//yuv_to_rgb(out);
normalize_image(out);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
show_image(out, "out");
save_image(out, "out");
#ifdef OPENCV
cvWaitKey(0);
#endif
show_image(out, "out", 0);
free_image(im);
}
@ -639,11 +632,10 @@ void train_prog(char *cfg, char *weight, char *acfg, char *aweight, int clear, i
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
show_image(im, "gen", 1);
show_image(im2, "train", 1);
save_image(im, "gen");
save_image(im2, "train");
cvWaitKey(1);
}
#endif
@ -826,11 +818,10 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
show_image(im, "gen", 1);
show_image(im2, "train", 1);
save_image(im, "gen");
save_image(im2, "train");
cvWaitKey(1);
}
#endif
@ -1010,9 +1001,8 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
if(display){
image im = float_to_image(anet->w, anet->h, anet->c, gray.X.vals[0]);
image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
show_image(im, "gen");
show_image(im2, "train");
cvWaitKey(1);
show_image(im, "gen", 1);
show_image(im2, "train", 1);
}
#endif
free_data(merge);
@ -1342,12 +1332,9 @@ void test_lsd(char *cfg, char *weights, char *filename, int gray)
//yuv_to_rgb(out);
constrain_image(out);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
show_image(out, "out");
show_image(crop, "crop");
save_image(out, "out");
#ifdef OPENCV
cvWaitKey(0);
#endif
show_image(out, "out", 1);
show_image(crop, "crop", 0);
free_image(im);
free_image(resized);

View File

@ -376,10 +376,7 @@ void run_nightmare(int argc, char **argv)
if(reconstruct){
reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1);
//if ((n+1)%30 == 0) rate *= .5;
show_image(im, "reconstruction");
#ifdef OPENCV
cvWaitKey(10);
#endif
show_image(im, "reconstruction", 10);
}else{
int layer = max_layer + rand()%range - range/2;
int octave = rand()%octaves;
@ -400,8 +397,7 @@ void run_nightmare(int argc, char **argv)
}
printf("%d %s\n", e, buff);
save_image(im, buff);
//show_image(im, buff);
//cvWaitKey(0);
//show_image(im, buff, 0);
if(rotate){
image rot = rotate_image(im, rotate);

View File

@ -179,7 +179,6 @@ void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
image in = get_image_from_stream(cap);
image crop = center_crop_image(in, net->w, net->h);
grayscale_image_3c(crop);
show_image(crop, "Regressor");
float *predictions = network_predict(net, crop.data);
@ -192,11 +191,10 @@ void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_inde
printf("%s: %f\n", names[i], predictions[i]);
}
show_image(crop, "Regressor", 10);
free_image(in);
free_image(crop);
cvWaitKey(10);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);

View File

@ -42,7 +42,6 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
int N = plist->size;
clock_t time;
load_args args = {0};
args.w = net->w;
@ -73,14 +72,14 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
int epoch = (*net->seen)/N;
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
time=clock();
double time = what_time_is_it_now();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
time = what_time_is_it_now();
float loss = 0;
#ifdef GPU
@ -97,18 +96,15 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
image im = float_to_image(net->w, net->h, net->c, train.X.vals[net->batch*(net->subdivisions-1)]);
image mask = mask_to_rgb(tr);
image prmask = mask_to_rgb(pred);
show_image(im, "input");
show_image(prmask, "pred");
show_image(mask, "truth");
#ifdef OPENCV
cvWaitKey(100);
#endif
show_image(im, "input", 1);
show_image(prmask, "pred", 1);
show_image(mask, "truth", 100);
free_image(mask);
free_image(prmask);
}
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
free_data(train);
if(*net->seen/N > epoch){
epoch = *net->seen/N;
@ -159,13 +155,10 @@ void predict_segmenter(char *datafile, char *cfg, char *weights, char *filename)
float *predictions = network_predict(net, X);
image pred = get_network_image(net);
image prmask = mask_to_rgb(pred);
show_image(sized, "orig");
show_image(prmask, "pred");
#ifdef OPENCV
cvWaitKey(0);
#endif
printf("Predicted: %f\n", predictions[0]);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
show_image(sized, "orig", 1);
show_image(prmask, "pred", 0);
free_image(im);
free_image(sized);
free_image(prmask);
@ -210,14 +203,12 @@ void demo_segmenter(char *datacfg, char *cfg, char *weights, int cam_index, cons
image pred = get_network_image(net);
image prmask = mask_to_rgb(pred);
show_image(prmask, "Segmenter");
show_image(prmask, "Segmenter", 10);
free_image(in_s);
free_image(in);
free_image(prmask);
cvWaitKey(10);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);

View File

@ -93,7 +93,7 @@ void test_super(char *cfgfile, char *weightfile, char *filename)
image out = get_network_image(net);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
save_image(out, "out");
show_image(out, "out");
show_image(out, "out", 0);
free_image(im);
if (filename) break;

View File

@ -296,14 +296,10 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
draw_detections(im, dets, l.side*l.side*l.n, thresh, voc_names, alphabet, 20);
save_image(im, "predictions");
show_image(im, "predictions");
show_image(im, "predictions", 0);
free_detections(dets, nboxes);
free_image(im);
free_image(sized);
#ifdef OPENCV
cvWaitKey(0);
cvDestroyAllWindows();
#endif
if (filename) break;
}
}