mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
About to do something stupid...
This commit is contained in:
@ -6,6 +6,7 @@
|
||||
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
//#include "old_conv.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
|
||||
@ -113,14 +114,17 @@ double *get_network_delta(network net)
|
||||
return get_network_delta_layer(net, net.n-1);
|
||||
}
|
||||
|
||||
void calculate_error_network(network net, double *truth)
|
||||
double calculate_error_network(network net, double *truth)
|
||||
{
|
||||
double sum = 0;
|
||||
double *delta = get_network_delta(net);
|
||||
double *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
delta[i] = truth[i] - out[i];
|
||||
sum += delta[i]*delta[i];
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
int get_predicted_class_network(network net)
|
||||
@ -130,9 +134,9 @@ int get_predicted_class_network(network net)
|
||||
return max_index(out, k);
|
||||
}
|
||||
|
||||
void backward_network(network net, double *input, double *truth)
|
||||
double backward_network(network net, double *input, double *truth)
|
||||
{
|
||||
calculate_error_network(net, truth);
|
||||
double error = calculate_error_network(net, truth);
|
||||
int i;
|
||||
double *prev_input;
|
||||
double *prev_delta;
|
||||
@ -146,8 +150,9 @@ void backward_network(network net, double *input, double *truth)
|
||||
}
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
learn_convolutional_layer(layer, prev_input);
|
||||
if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
|
||||
learn_convolutional_layer(layer);
|
||||
//learn_convolutional_layer(layer);
|
||||
//if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
@ -163,29 +168,31 @@ void backward_network(network net, double *input, double *truth)
|
||||
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
}
|
||||
return error;
|
||||
}
|
||||
|
||||
int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
|
||||
double train_network_datum(network net, double *x, double *y, double step, double momentum, double decay)
|
||||
{
|
||||
forward_network(net, x);
|
||||
int class = get_predicted_class_network(net);
|
||||
backward_network(net, x, y);
|
||||
double error = backward_network(net, x, y);
|
||||
update_network(net, step, momentum, decay);
|
||||
return (y[class]?1:0);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
}
|
||||
|
||||
double train_network_sgd(network net, data d, int n, double step, double momentum,double decay)
|
||||
{
|
||||
int i;
|
||||
int correct = 0;
|
||||
double error = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
//if((i+1)%10 == 0){
|
||||
// printf("%d: %f\n", (i+1), (double)correct/(i+1));
|
||||
//}
|
||||
}
|
||||
return (double)correct/n;
|
||||
return error/n;
|
||||
}
|
||||
double train_network_batch(network net, data d, int n, double step, double momentum,double decay)
|
||||
{
|
||||
@ -282,7 +289,7 @@ void visualize_network(network net)
|
||||
sprintf(buff, "Layer %d", i);
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
visualize_convolutional_filters(layer, buff);
|
||||
visualize_convolutional_layer(layer, buff);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user