mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
PYTHON DETECTION NOW I'M OUT DON'T WAIT UP FOR ME 🐫 🐴 🐶 🏜️
This commit is contained in:
parent
624a593075
commit
b34082019d
@ -1,6 +1,10 @@
|
|||||||
[net]
|
[net]
|
||||||
batch=64
|
# Training
|
||||||
subdivisions=8
|
# batch=64
|
||||||
|
# subdivisions=2
|
||||||
|
# Testing
|
||||||
|
batch=1
|
||||||
|
subdivisions=1
|
||||||
width=416
|
width=416
|
||||||
height=416
|
height=416
|
||||||
channels=3
|
channels=3
|
||||||
@ -12,10 +16,11 @@ exposure = 1.5
|
|||||||
hue=.1
|
hue=.1
|
||||||
|
|
||||||
learning_rate=0.001
|
learning_rate=0.001
|
||||||
max_batches = 120000
|
burn_in=1000
|
||||||
|
max_batches = 500200
|
||||||
policy=steps
|
policy=steps
|
||||||
steps=-1,100,80000,100000
|
steps=400000,450000
|
||||||
scales=.1,10,.1,.1
|
scales=.1,.1
|
||||||
|
|
||||||
[convolutional]
|
[convolutional]
|
||||||
batch_normalize=1
|
batch_normalize=1
|
||||||
@ -104,7 +109,7 @@ batch_normalize=1
|
|||||||
size=3
|
size=3
|
||||||
stride=1
|
stride=1
|
||||||
pad=1
|
pad=1
|
||||||
filters=1024
|
filters=512
|
||||||
activation=leaky
|
activation=leaky
|
||||||
|
|
||||||
[convolutional]
|
[convolutional]
|
||||||
@ -115,14 +120,14 @@ filters=425
|
|||||||
activation=linear
|
activation=linear
|
||||||
|
|
||||||
[region]
|
[region]
|
||||||
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
|
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
|
||||||
bias_match=1
|
bias_match=1
|
||||||
classes=80
|
classes=80
|
||||||
coords=4
|
coords=4
|
||||||
num=5
|
num=5
|
||||||
softmax=1
|
softmax=1
|
||||||
jitter=.2
|
jitter=.2
|
||||||
rescore=1
|
rescore=0
|
||||||
|
|
||||||
object_scale=5
|
object_scale=5
|
||||||
noobject_scale=1
|
noobject_scale=1
|
||||||
|
@ -699,6 +699,9 @@ float *network_predict_p(network *net, float *input);
|
|||||||
int network_width(network *net);
|
int network_width(network *net);
|
||||||
int network_height(network *net);
|
int network_height(network *net);
|
||||||
float *network_predict_image(network *net, image im);
|
float *network_predict_image(network *net, image im);
|
||||||
|
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, box *boxes, float **probs);
|
||||||
|
int num_boxes(network *net);
|
||||||
|
box *make_boxes(network *net);
|
||||||
|
|
||||||
void reset_network_state(network net, int b);
|
void reset_network_state(network net, int b);
|
||||||
void reset_network_state(network net, int b);
|
void reset_network_state(network net, int b);
|
||||||
|
@ -15,6 +15,12 @@ def sample(probs):
|
|||||||
def c_array(ctype, values):
|
def c_array(ctype, values):
|
||||||
return (ctype * len(values))(*values)
|
return (ctype * len(values))(*values)
|
||||||
|
|
||||||
|
class BOX(Structure):
|
||||||
|
_fields_ = [("x", c_float),
|
||||||
|
("y", c_float),
|
||||||
|
("w", c_float),
|
||||||
|
("h", c_float)]
|
||||||
|
|
||||||
class IMAGE(Structure):
|
class IMAGE(Structure):
|
||||||
_fields_ = [("w", c_int),
|
_fields_ = [("w", c_int),
|
||||||
("h", c_int),
|
("h", c_int),
|
||||||
@ -36,6 +42,24 @@ predict = lib.network_predict_p
|
|||||||
predict.argtypes = [c_void_p, POINTER(c_float)]
|
predict.argtypes = [c_void_p, POINTER(c_float)]
|
||||||
predict.restype = POINTER(c_float)
|
predict.restype = POINTER(c_float)
|
||||||
|
|
||||||
|
make_boxes = lib.make_boxes
|
||||||
|
make_boxes.argtypes = [c_void_p]
|
||||||
|
make_boxes.restype = POINTER(BOX)
|
||||||
|
|
||||||
|
free_ptrs = lib.free_ptrs
|
||||||
|
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
|
||||||
|
|
||||||
|
num_boxes = lib.num_boxes
|
||||||
|
num_boxes.argtypes = [c_void_p]
|
||||||
|
num_boxes.restype = c_int
|
||||||
|
|
||||||
|
make_probs = lib.make_probs
|
||||||
|
make_probs.argtypes = [c_void_p]
|
||||||
|
make_probs.restype = POINTER(POINTER(c_float))
|
||||||
|
|
||||||
|
detect = lib.network_predict_p
|
||||||
|
detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
|
||||||
|
|
||||||
reset_rnn = lib.reset_rnn
|
reset_rnn = lib.reset_rnn
|
||||||
reset_rnn.argtypes = [c_void_p]
|
reset_rnn.argtypes = [c_void_p]
|
||||||
|
|
||||||
@ -43,6 +67,9 @@ load_net = lib.load_network_p
|
|||||||
load_net.argtypes = [c_char_p, c_char_p, c_int]
|
load_net.argtypes = [c_char_p, c_char_p, c_int]
|
||||||
load_net.restype = c_void_p
|
load_net.restype = c_void_p
|
||||||
|
|
||||||
|
free_image = lib.free_image
|
||||||
|
free_image.argtypes = [IMAGE]
|
||||||
|
|
||||||
letterbox_image = lib.letterbox_image
|
letterbox_image = lib.letterbox_image
|
||||||
letterbox_image.argtypes = [IMAGE, c_int, c_int]
|
letterbox_image.argtypes = [IMAGE, c_int, c_int]
|
||||||
letterbox_image.restype = IMAGE
|
letterbox_image.restype = IMAGE
|
||||||
@ -59,6 +86,9 @@ predict_image = lib.network_predict_image
|
|||||||
predict_image.argtypes = [c_void_p, IMAGE]
|
predict_image.argtypes = [c_void_p, IMAGE]
|
||||||
predict_image.restype = POINTER(c_float)
|
predict_image.restype = POINTER(c_float)
|
||||||
|
|
||||||
|
network_detect = lib.network_detect
|
||||||
|
network_detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
|
||||||
|
|
||||||
def classify(net, meta, im):
|
def classify(net, meta, im):
|
||||||
out = predict_image(net, im)
|
out = predict_image(net, im)
|
||||||
res = []
|
res = []
|
||||||
@ -67,20 +97,31 @@ def classify(net, meta, im):
|
|||||||
res = sorted(res, key=lambda x: -x[1])
|
res = sorted(res, key=lambda x: -x[1])
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def detect(net, meta, im):
|
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
|
||||||
out = predict_image(net, im)
|
im = load_image(image, 0, 0)
|
||||||
|
boxes = make_boxes(net)
|
||||||
|
probs = make_probs(net)
|
||||||
|
num = num_boxes(net)
|
||||||
|
network_detect(net, im, thresh, hier_thresh, nms, boxes, probs)
|
||||||
res = []
|
res = []
|
||||||
|
for j in range(num):
|
||||||
for i in range(meta.classes):
|
for i in range(meta.classes):
|
||||||
res.append((meta.names[i], out[i]))
|
if probs[j][i] > 0:
|
||||||
|
res.append((meta.names[i], probs[j][i], (boxes[j].x, boxes[j].y, boxes[j].w, boxes[j].h)))
|
||||||
res = sorted(res, key=lambda x: -x[1])
|
res = sorted(res, key=lambda x: -x[1])
|
||||||
|
free_image(im)
|
||||||
|
free_ptrs(cast(probs, POINTER(c_void_p)), num)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0)
|
#net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0)
|
||||||
im = load_image("data/wolf.jpg", 0, 0)
|
#im = load_image("data/wolf.jpg", 0, 0)
|
||||||
meta = load_meta("cfg/imagenet1k.data")
|
#meta = load_meta("cfg/imagenet1k.data")
|
||||||
r = classify(net, meta, im)
|
#r = classify(net, meta, im)
|
||||||
print r[:10]
|
#print r[:10]
|
||||||
|
net = load_net("cfg/tiny-yolo.cfg", "tiny-yolo.backup", 0)
|
||||||
|
meta = load_meta("cfg/coco.data")
|
||||||
|
r = detect(net, meta, "data/dog.jpg")
|
||||||
|
print r
|
||||||
|
|
||||||
|
|
||||||
|
@ -494,6 +494,38 @@ float *network_predict(network net, float *input)
|
|||||||
return net.output;
|
return net.output;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int num_boxes(network *net)
|
||||||
|
{
|
||||||
|
layer l = net->layers[net->n-1];
|
||||||
|
return l.w*l.h*l.n;
|
||||||
|
}
|
||||||
|
|
||||||
|
box *make_boxes(network *net)
|
||||||
|
{
|
||||||
|
layer l = net->layers[net->n-1];
|
||||||
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||||
|
return boxes;
|
||||||
|
}
|
||||||
|
|
||||||
|
float **make_probs(network *net)
|
||||||
|
{
|
||||||
|
int j;
|
||||||
|
layer l = net->layers[net->n-1];
|
||||||
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||||
|
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));
|
||||||
|
return probs;
|
||||||
|
}
|
||||||
|
|
||||||
|
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, box *boxes, float **probs)
|
||||||
|
{
|
||||||
|
network_predict_image(net, im);
|
||||||
|
layer l = net->layers[net->n-1];
|
||||||
|
if(l.type == REGION){
|
||||||
|
get_region_boxes(l, im.w, im.h, net->w, net->h, thresh, probs, boxes, 0, 0, 0, hier_thresh, 0);
|
||||||
|
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
float *network_predict_p(network *net, float *input)
|
float *network_predict_p(network *net, float *input)
|
||||||
{
|
{
|
||||||
return network_predict(*net, input);
|
return network_predict(*net, input);
|
||||||
|
Loading…
Reference in New Issue
Block a user