mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
🔥 ARE YOU NOT ENTERTAINED 🔥
This commit is contained in:
parent
75fe603722
commit
b3c4fc9f22
134
cfg/yolo-tiny.cfg
Normal file
134
cfg/yolo-tiny.cfg
Normal file
@ -0,0 +1,134 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=8
|
||||
width=416
|
||||
height=416
|
||||
channels=3
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
angle=0
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
hue=.1
|
||||
|
||||
learning_rate=0.001
|
||||
max_batches = 120000
|
||||
policy=steps
|
||||
steps=-1,100,80000,100000
|
||||
scales=.1,10,.1,.1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=16
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
###########
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=425
|
||||
activation=linear
|
||||
|
||||
[region]
|
||||
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
|
||||
bias_match=1
|
||||
classes=80
|
||||
coords=4
|
||||
num=5
|
||||
softmax=1
|
||||
jitter=.2
|
||||
rescore=1
|
||||
|
||||
object_scale=5
|
||||
noobject_scale=1
|
||||
class_scale=1
|
||||
coord_scale=1
|
||||
|
||||
absolute=1
|
||||
thresh = .6
|
||||
random=1
|
134
cfg/yolo-tiny_voc.cfg
Normal file
134
cfg/yolo-tiny_voc.cfg
Normal file
@ -0,0 +1,134 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=8
|
||||
width=416
|
||||
height=416
|
||||
channels=3
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
angle=0
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
hue=.1
|
||||
|
||||
learning_rate=0.001
|
||||
max_batches = 40100
|
||||
policy=steps
|
||||
steps=-1,100,20000,30000
|
||||
scales=.1,10,.1,.1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=16
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
###########
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
filters=125
|
||||
activation=linear
|
||||
|
||||
[region]
|
||||
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
|
||||
bias_match=1
|
||||
classes=20
|
||||
coords=4
|
||||
num=5
|
||||
softmax=1
|
||||
jitter=.2
|
||||
rescore=1
|
||||
|
||||
object_scale=5
|
||||
noobject_scale=1
|
||||
class_scale=1
|
||||
coord_scale=1
|
||||
|
||||
absolute=1
|
||||
thresh = .6
|
||||
random=1
|
@ -63,7 +63,7 @@ void *detect_in_thread(void *ptr)
|
||||
if(l.type == DETECTION){
|
||||
get_detection_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
|
||||
} else if (l.type == REGION){
|
||||
get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0);
|
||||
get_region_boxes(l, 1, 1, demo_thresh, probs, boxes, 0, 0);
|
||||
} else {
|
||||
error("Last layer must produce detections\n");
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
||||
args.num_boxes = l.max_boxes;
|
||||
args.d = &buffer;
|
||||
args.type = DETECTION_DATA;
|
||||
args.threads = 4;
|
||||
args.threads = 8;
|
||||
|
||||
args.angle = net.angle;
|
||||
args.exposure = net.exposure;
|
||||
@ -81,6 +81,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
||||
if(l.random && count++%10 == 0){
|
||||
printf("Resizing\n");
|
||||
int dim = (rand() % 10 + 10) * 32;
|
||||
if (get_current_batch(net)+100 > net.max_batches) dim = 544;
|
||||
//int dim = (rand() % 4 + 16) * 32;
|
||||
printf("%d\n", dim);
|
||||
args.w = dim;
|
||||
@ -208,7 +209,7 @@ void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs,
|
||||
}
|
||||
}
|
||||
|
||||
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h, int *map)
|
||||
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < total; ++i){
|
||||
@ -224,7 +225,6 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int
|
||||
|
||||
for(j = 0; j < classes; ++j){
|
||||
int class = j;
|
||||
if (map) class = map[j];
|
||||
if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
|
||||
xmin, ymin, xmax, ymax);
|
||||
}
|
||||
@ -233,6 +233,7 @@ void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int
|
||||
|
||||
void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
{
|
||||
int j;
|
||||
list *options = read_data_cfg(datacfg);
|
||||
char *valid_images = option_find_str(options, "valid", "data/train.list");
|
||||
char *name_list = option_find_str(options, "names", "data/names.list");
|
||||
@ -242,23 +243,6 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
int *map = 0;
|
||||
if (mapf) map = read_map(mapf);
|
||||
|
||||
|
||||
char buff[1024];
|
||||
char *type = option_find_str(options, "eval", "voc");
|
||||
FILE *fp = 0;
|
||||
int coco = 0;
|
||||
int imagenet = 0;
|
||||
if(0==strcmp(type, "coco")){
|
||||
snprintf(buff, 1024, "%s/coco_results.json", prefix);
|
||||
fp = fopen(buff, "w");
|
||||
fprintf(fp, "[\n");
|
||||
coco = 1;
|
||||
} else if(0==strcmp(type, "imagenet")){
|
||||
snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
|
||||
fp = fopen(buff, "w");
|
||||
imagenet = 1;
|
||||
}
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
@ -274,12 +258,31 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
layer l = net.layers[net.n-1];
|
||||
int classes = l.classes;
|
||||
|
||||
int j;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
for(j = 0; j < classes; ++j){
|
||||
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
char buff[1024];
|
||||
char *type = option_find_str(options, "eval", "voc");
|
||||
FILE *fp = 0;
|
||||
FILE **fps = 0;
|
||||
int coco = 0;
|
||||
int imagenet = 0;
|
||||
if(0==strcmp(type, "coco")){
|
||||
snprintf(buff, 1024, "%s/coco_results.json", prefix);
|
||||
fp = fopen(buff, "w");
|
||||
fprintf(fp, "[\n");
|
||||
coco = 1;
|
||||
} else if(0==strcmp(type, "imagenet")){
|
||||
snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
|
||||
fp = fopen(buff, "w");
|
||||
imagenet = 1;
|
||||
classes = 200;
|
||||
} else {
|
||||
fps = calloc(classes, sizeof(FILE *));
|
||||
for(j = 0; j < classes; ++j){
|
||||
snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
@ -330,12 +333,12 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
network_predict(net, X);
|
||||
int w = val[t].w;
|
||||
int h = val[t].h;
|
||||
get_region_boxes(l, w, h, thresh, probs, boxes, 0);
|
||||
get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
|
||||
if (coco){
|
||||
print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
} else if (imagenet){
|
||||
print_imagenet_detections(fp, i+t-nthreads+1 + 9741, boxes, probs, l.w*l.h*l.n, 200, w, h, map);
|
||||
print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
} else {
|
||||
print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
|
||||
}
|
||||
@ -345,7 +348,7 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
|
||||
}
|
||||
}
|
||||
for(j = 0; j < classes; ++j){
|
||||
fclose(fps[j]);
|
||||
if(fps) fclose(fps[j]);
|
||||
}
|
||||
if(coco){
|
||||
fseek(fp, -2, SEEK_CUR);
|
||||
@ -394,7 +397,7 @@ void validate_detector_recall(char *cfgfile, char *weightfile)
|
||||
image sized = resize_image(orig, net.w, net.h);
|
||||
char *id = basecfg(path);
|
||||
network_predict(net, sized.data);
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1);
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0);
|
||||
if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
|
||||
|
||||
char labelpath[4096];
|
||||
@ -473,7 +476,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
|
||||
time=clock();
|
||||
network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0);
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
|
||||
draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
|
||||
save_image(im, "predictions");
|
||||
|
@ -196,7 +196,8 @@ void forward_region_layer(const region_layer l, network_state state)
|
||||
if(truth.x > 100000 && truth.y > 100000){
|
||||
for(n = 0; n < l.n*l.w*l.h; ++n){
|
||||
int index = size*n + b*l.outputs + 5;
|
||||
float p = get_hierarchy_probability(l.output + index, l.softmax_tree, class);
|
||||
float scale = l.output[index-1];
|
||||
float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class);
|
||||
if(p > maxp){
|
||||
maxp = p;
|
||||
maxi = n;
|
||||
@ -324,7 +325,7 @@ void backward_region_layer(const region_layer l, network_state state)
|
||||
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
|
||||
}
|
||||
|
||||
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
||||
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
|
||||
{
|
||||
int i,j,n;
|
||||
float *predictions = l.output;
|
||||
@ -348,8 +349,13 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b
|
||||
|
||||
hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
|
||||
int found = 0;
|
||||
for(j = l.classes - 1; j >= 0; --j){
|
||||
if(1){
|
||||
if(map){
|
||||
for(j = 0; j < 200; ++j){
|
||||
float prob = scale*predictions[class_index+map[j]];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
} else {
|
||||
for(j = l.classes - 1; j >= 0; --j){
|
||||
if(!found && predictions[class_index + j] > .5){
|
||||
found = 1;
|
||||
} else {
|
||||
@ -357,12 +363,9 @@ void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *b
|
||||
}
|
||||
float prob = predictions[class_index+j];
|
||||
probs[index][j] = (scale > thresh) ? prob : 0;
|
||||
}else{
|
||||
float prob = scale*predictions[class_index+j];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
} else {
|
||||
for(j = 0; j < l.classes; ++j){
|
||||
float prob = scale*predictions[class_index+j];
|
||||
probs[index][j] = (prob > thresh) ? prob : 0;
|
||||
|
@ -9,7 +9,7 @@ typedef layer region_layer;
|
||||
region_layer make_region_layer(int batch, int h, int w, int n, int classes, int coords);
|
||||
void forward_region_layer(const region_layer l, network_state state);
|
||||
void backward_region_layer(const region_layer l, network_state state);
|
||||
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
|
||||
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map);
|
||||
void resize_region_layer(layer *l, int w, int h);
|
||||
|
||||
#ifdef GPU
|
||||
|
Loading…
Reference in New Issue
Block a user