mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Merge branch 'master' of pjreddie.com:jnet
Conflicts: src/tests.c
This commit is contained in:
commit
b4b729a15e
13
Makefile
13
Makefile
@ -1,18 +1,21 @@
|
||||
CC=gcc
|
||||
COMMON=-Wall `pkg-config --cflags opencv`
|
||||
UNAME = $(shell uname)
|
||||
OPTS=-O3
|
||||
ifeq ($(UNAME), Darwin)
|
||||
COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
LDFLAGS= -framework OpenCL
|
||||
else
|
||||
COMMON += -march=native
|
||||
OPTS+= -march=native -flto
|
||||
LDFLAGS= -lOpenCL
|
||||
endif
|
||||
CFLAGS= $(COMMON) -Ofast -flto
|
||||
CFLAGS= $(COMMON) $(OPTS)
|
||||
#CFLAGS= $(COMMON) -O0 -g
|
||||
LDFLAGS=`pkg-config --libs opencv` -lm
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm
|
||||
VPATH=./src/
|
||||
EXEC=cnn
|
||||
|
||||
OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o
|
||||
OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o opencl.o gpu_gemm.o cpu_gemm.o normalization_layer.o
|
||||
|
||||
all: $(EXEC)
|
||||
|
||||
|
@ -7,16 +7,17 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
{
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
int i;
|
||||
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
||||
layer->inputs = inputs;
|
||||
layer->outputs = outputs;
|
||||
layer->batch=batch;
|
||||
|
||||
layer->output = calloc(outputs, sizeof(float*));
|
||||
layer->delta = calloc(outputs, sizeof(float*));
|
||||
layer->output = calloc(batch*outputs, sizeof(float*));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||
@ -78,14 +79,14 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
|
||||
int m = 1;
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
float *a = input;
|
||||
float *b = layer.weights;
|
||||
float *c = layer.output;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
//for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
|
||||
@ -94,12 +95,12 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
void learn_connected_layer(connected_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
||||
layer.bias_updates[i] += layer.delta[i];
|
||||
layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = 1;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
float *a = input;
|
||||
float *b = layer.delta;
|
||||
@ -113,7 +114,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
|
||||
int m = layer.inputs;
|
||||
int k = layer.outputs;
|
||||
int n = 1;
|
||||
int n = layer.batch;
|
||||
|
||||
float *a = layer.weights;
|
||||
float *b = layer.delta;
|
||||
|
@ -4,6 +4,7 @@
|
||||
#include "activations.h"
|
||||
|
||||
typedef struct{
|
||||
int batch;
|
||||
int inputs;
|
||||
int outputs;
|
||||
float *weights;
|
||||
@ -25,7 +26,7 @@ typedef struct{
|
||||
|
||||
} connected_layer;
|
||||
|
||||
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation);
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
|
||||
|
||||
void forward_connected_layer(connected_layer layer, float *input);
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta);
|
||||
|
@ -31,7 +31,7 @@ image get_convolutional_delta(convolutional_layer layer)
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
}
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
|
||||
@ -40,6 +40,7 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->n = n;
|
||||
layer->batch = batch;
|
||||
layer->stride = stride;
|
||||
layer->size = size;
|
||||
|
||||
@ -56,12 +57,12 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = 0;
|
||||
}
|
||||
int out_h = (h-size)/stride + 1;
|
||||
int out_w = (w-size)/stride + 1;
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
|
||||
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->output = calloc(out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(out_h * out_w * n, sizeof(float));
|
||||
layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
@ -70,21 +71,39 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
|
||||
return layer;
|
||||
}
|
||||
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
|
||||
layer->col_image = realloc(layer->col_image,
|
||||
layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
||||
layer->output = realloc(layer->output,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
layer->delta = realloc(layer->delta,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
}
|
||||
|
||||
void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = ((layer.h-layer.size)/layer.stride + 1)*
|
||||
((layer.w-layer.size)/layer.stride + 1);
|
||||
int n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
|
||||
memset(layer.output, 0, m*n*sizeof(float));
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
|
||||
im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch));
|
||||
}
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
|
||||
for(i = 0; i < m*n; ++i){
|
||||
@ -97,9 +116,10 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
void gradient_delta_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
int i;
|
||||
int size = convolutional_out_height(layer)
|
||||
*convolutional_out_width(layer)
|
||||
*layer.n;
|
||||
int size = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.n*
|
||||
layer.batch;
|
||||
for(i = 0; i < size; ++i){
|
||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
||||
}
|
||||
@ -107,15 +127,17 @@ void gradient_delta_convolutional_layer(convolutional_layer layer)
|
||||
|
||||
void learn_bias_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
int i,j;
|
||||
int i,j,b;
|
||||
int size = convolutional_out_height(layer)
|
||||
*convolutional_out_width(layer);
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
float sum = 0;
|
||||
for(j = 0; j < size; ++j){
|
||||
sum += layer.delta[j+i*size];
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
float sum = 0;
|
||||
for(j = 0; j < size; ++j){
|
||||
sum += layer.delta[j+size*(i+b*layer.n)];
|
||||
}
|
||||
layer.bias_updates[i] += sum/size;
|
||||
}
|
||||
layer.bias_updates[i] += sum/size;
|
||||
}
|
||||
}
|
||||
|
||||
@ -125,8 +147,9 @@ void learn_convolutional_layer(convolutional_layer layer)
|
||||
learn_bias_convolutional_layer(layer);
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = ((layer.h-layer.size)/layer.stride + 1)*
|
||||
((layer.w-layer.size)/layer.stride + 1);
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
|
||||
float *a = layer.delta;
|
||||
float *b = layer.col_image;
|
||||
@ -137,10 +160,12 @@ void learn_convolutional_layer(convolutional_layer layer)
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
{
|
||||
int i;
|
||||
int m = layer.size*layer.size*layer.c;
|
||||
int k = layer.n;
|
||||
int n = ((layer.h-layer.size)/layer.stride + 1)*
|
||||
((layer.w-layer.size)/layer.stride + 1);
|
||||
int n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.delta;
|
||||
@ -150,8 +175,10 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
memset(c, 0, m*n*sizeof(float));
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
memset(delta, 0, layer.h*layer.w*layer.c*sizeof(float));
|
||||
col2im_cpu(c, layer.c, layer.h, layer.w, layer.size, layer.stride, delta);
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
col2im_cpu(c+i*n/layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, delta+i*n/layer.batch);
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
|
||||
@ -225,7 +252,7 @@ void update_convolutional_layer(convolutional_layer layer, float step, float mom
|
||||
|
||||
void test_convolutional_layer()
|
||||
{
|
||||
convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR);
|
||||
convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
|
||||
float input[] = {1,2,3,4,
|
||||
5,6,7,8,
|
||||
9,10,11,12,
|
||||
@ -258,52 +285,48 @@ image get_convolutional_filter(convolutional_layer layer, int i)
|
||||
return float_to_image(h,w,c,layer.filters+i*h*w*c);
|
||||
}
|
||||
|
||||
void visualize_convolutional_layer(convolutional_layer layer, char *window)
|
||||
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
|
||||
{
|
||||
int color = 1;
|
||||
int border = 1;
|
||||
int h,w,c;
|
||||
int size = layer.size;
|
||||
h = size;
|
||||
w = (size + border) * layer.n - border;
|
||||
c = layer.c;
|
||||
if(c != 3 || !color){
|
||||
h = (h+border)*c - border;
|
||||
c = 1;
|
||||
image *filters = calloc(layer.n, sizeof(image));
|
||||
int i,j,k,c;
|
||||
if(!prev_filters){
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
||||
}
|
||||
}
|
||||
|
||||
image filters = make_image(h,w,c);
|
||||
int i,j;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
int w_offset = i*(size+border);
|
||||
image k = get_convolutional_filter(layer, i);
|
||||
//printf("%f ** ", layer.biases[i]);
|
||||
//print_image(k);
|
||||
image copy = copy_image(k);
|
||||
normalize_image(copy);
|
||||
for(j = 0; j < k.c; ++j){
|
||||
//set_pixel(copy,0,0,j,layer.biases[i]);
|
||||
}
|
||||
if(c == 3 && color){
|
||||
embed_image(copy, filters, 0, w_offset);
|
||||
}
|
||||
else{
|
||||
for(j = 0; j < k.c; ++j){
|
||||
int h_offset = j*(size+border);
|
||||
image layer = get_image_layer(k, j);
|
||||
embed_image(layer, filters, h_offset, w_offset);
|
||||
free_image(layer);
|
||||
else{
|
||||
image base = prev_filters[0];
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
image filter = get_convolutional_filter(layer, i);
|
||||
filters[i] = make_image(base.h, base.w, base.c);
|
||||
for(j = 0; j < layer.size; ++j){
|
||||
for(k = 0; k < layer.size; ++k){
|
||||
for(c = 0; c < layer.c; ++c){
|
||||
float weight = get_pixel(filter, j, k, c);
|
||||
image prev_filter = copy_image(prev_filters[c]);
|
||||
scale_image(prev_filter, weight);
|
||||
add_into_image(prev_filter, filters[i], 0,0);
|
||||
free_image(prev_filter);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
free_image(copy);
|
||||
}
|
||||
image delta = get_convolutional_delta(layer);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Delta", window);
|
||||
show_image(dc, buff);
|
||||
free_image(dc);
|
||||
show_image(filters, window);
|
||||
free_image(filters);
|
||||
return filters;
|
||||
}
|
||||
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
||||
{
|
||||
image *single_filters = weighted_sum_filters(layer, 0);
|
||||
show_images(single_filters, layer.n, window);
|
||||
|
||||
image delta = get_convolutional_image(layer);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Output", window);
|
||||
show_image(dc, buff);
|
||||
save_image(dc, buff);
|
||||
free_image(dc);
|
||||
return single_filters;
|
||||
}
|
||||
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include "activations.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int n;
|
||||
int size;
|
||||
@ -24,11 +25,12 @@ typedef struct {
|
||||
ACTIVATION activation;
|
||||
} convolutional_layer;
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, float *in);
|
||||
void learn_convolutional_layer(convolutional_layer layer);
|
||||
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay);
|
||||
void visualize_convolutional_layer(convolutional_layer layer, char *window);
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *delta);
|
||||
|
||||
|
86
src/cpu_gemm.c
Normal file
86
src/cpu_gemm.c
Normal file
@ -0,0 +1,86 @@
|
||||
#include "mini_blas.h"
|
||||
|
||||
void cpu_gemm_nn(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
int i,j,k;
|
||||
for(i = 0; i < M; ++i){
|
||||
for(k = 0; k < K; ++k){
|
||||
register float A_PART = ALPHA*A[i*lda+k];
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc+j] += A_PART*B[k*ldb+j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cpu_gemm_nt(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
int i,j,k;
|
||||
for(i = 0; i < M; ++i){
|
||||
for(j = 0; j < N; ++j){
|
||||
register float sum = 0;
|
||||
for(k = 0; k < K; ++k){
|
||||
sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
|
||||
}
|
||||
C[i*ldc+j] += sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cpu_gemm_tn(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
int i,j,k;
|
||||
for(i = 0; i < M; ++i){
|
||||
for(k = 0; k < K; ++k){
|
||||
register float A_PART = ALPHA*A[k*lda+i];
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc+j] += A_PART*B[k*ldb+j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void cpu_gemm_tt(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
int i,j,k;
|
||||
for(i = 0; i < M; ++i){
|
||||
for(j = 0; j < N; ++j){
|
||||
for(k = 0; k < K; ++k){
|
||||
C[i*ldc+j] += ALPHA*A[i+k*lda]*B[k+j*ldb];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
// Assume beta = 1 LULZ
|
||||
if(!TA && !TB)
|
||||
cpu_gemm_nn( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
else if(TA && !TB)
|
||||
cpu_gemm_tn( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
else if(!TA && TB)
|
||||
cpu_gemm_nt( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
else
|
||||
cpu_gemm_tt( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
}
|
24
src/data.c
24
src/data.c
@ -119,6 +119,30 @@ data load_categorical_data_csv(char *filename, int target, int k)
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_cifar10_data(char *filename)
|
||||
{
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
unsigned long i,j;
|
||||
matrix X = make_matrix(10000, 3072);
|
||||
matrix y = make_matrix(10000, 10);
|
||||
d.X = X;
|
||||
d.y = y;
|
||||
|
||||
FILE *fp = fopen(filename, "rb");
|
||||
for(i = 0; i < 10000; ++i){
|
||||
unsigned char bytes[3073];
|
||||
fread(bytes, 1, 3073, fp);
|
||||
int class = bytes[0];
|
||||
y.vals[i][class] = 1;
|
||||
for(j = 0; j < X.cols; ++j){
|
||||
X.vals[i][j] = (double)bytes[j+1];
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
return d;
|
||||
}
|
||||
|
||||
void randomize_data(data d)
|
||||
{
|
||||
int i;
|
||||
|
@ -17,6 +17,7 @@ data load_data_image_pathfile_part(char *filename, int part, int total,
|
||||
char **labels, int k, int h, int w);
|
||||
data load_data_image_pathfile_random(char *filename, int n, char **labels,
|
||||
int k, int h, int w);
|
||||
data load_cifar10_data(char *filename);
|
||||
list *get_paths(char *filename);
|
||||
data load_categorical_data_csv(char *filename, int target, int k);
|
||||
void normalize_data_rows(data d);
|
||||
|
72
src/gemm.cl
Normal file
72
src/gemm.cl
Normal file
@ -0,0 +1,72 @@
|
||||
|
||||
|
||||
__kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int lda,
|
||||
__global float *B, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int ldc)
|
||||
{
|
||||
__local float Asub[BLOCK][BLOCK];
|
||||
__local float Bsub[BLOCK][BLOCK];
|
||||
|
||||
float val = 0;
|
||||
|
||||
int row_block = get_group_id(0);
|
||||
int col_block = get_group_id(1);
|
||||
|
||||
int sub_row = get_local_id(0);
|
||||
int sub_col = get_local_id(1);
|
||||
|
||||
int row = row_block*BLOCK + sub_row;
|
||||
int col = col_block*BLOCK + sub_col;
|
||||
|
||||
int i,j;
|
||||
for(i = 0; i < K; i += BLOCK){
|
||||
int arow = row_block*BLOCK + sub_row;
|
||||
int acol = i + sub_col;
|
||||
|
||||
int brow = i + sub_row;
|
||||
int bcol = col_block*BLOCK + sub_col;
|
||||
|
||||
Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol];
|
||||
Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(j = 0; j < BLOCK && i+j<K; ++j){
|
||||
val += Asub[sub_row][j]*Bsub[j][sub_col];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if(row < M && col < N){
|
||||
C[row*ldc+col] = val;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
__kernel void gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int lda,
|
||||
__global float *B, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int ldc)
|
||||
{
|
||||
float val = 0;
|
||||
int row = get_global_id(0);
|
||||
int col = get_global_id(1);
|
||||
int i;
|
||||
for(i = 0; i < K; ++i){
|
||||
float Aval;
|
||||
if(TA) Aval = A[i*lda+row];
|
||||
else Aval = A[row*lda+i];
|
||||
|
||||
float Bval;
|
||||
if(TB) Bval = B[col*ldb+i];
|
||||
else Bval = B[col+i*ldb];
|
||||
|
||||
val += Aval*Bval;
|
||||
}
|
||||
C[row*ldc+col] = val;
|
||||
}
|
||||
|
||||
*/
|
153
src/gpu_gemm.c
Normal file
153
src/gpu_gemm.c
Normal file
@ -0,0 +1,153 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "opencl.h"
|
||||
#include "mini_blas.h"
|
||||
|
||||
#define STR_HELPER(x) #x
|
||||
#define STR(x) STR_HELPER(x)
|
||||
|
||||
#define BLOCK 8
|
||||
|
||||
cl_kernel get_gemm_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) );
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
cl_setup();
|
||||
cl_kernel gemm_kernel = get_gemm_kernel();
|
||||
cl_context context = cl.context;
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
size_t size = sizeof(float)*(TA ? lda*K:lda*M);
|
||||
cl_mem A_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, A, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
size = sizeof(float)*(TB ? ldb*N:ldb*K);
|
||||
cl_mem B_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, B, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
size = sizeof(float)*(ldc*M);
|
||||
cl_mem C_gpu = clCreateBuffer(context,
|
||||
CL_MEM_WRITE_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, C, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {ceil((float)M/BLOCK)*BLOCK, ceil((float)N/BLOCK)*BLOCK};
|
||||
const size_t local_size[] = {BLOCK, BLOCK};
|
||||
//printf("%zd %zd %zd %zd\n", global_size[0], global_size[1], local_size[0], local_size[1]);
|
||||
|
||||
clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
clReleaseMemObject(A_gpu);
|
||||
clReleaseMemObject(B_gpu);
|
||||
clReleaseMemObject(C_gpu);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
cl_kernel get_gemm_kernel_slow()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm.cl", "gemm_slow");
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
void gpu_gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
cl_setup();
|
||||
cl_kernel gemm_kernel = get_gemm_kernel_slow();
|
||||
cl_context context = cl.context;
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
size_t size = sizeof(float)*(TA ? lda*K:lda*M);
|
||||
cl_mem A_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, A, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
size = sizeof(float)*(TB ? ldb*N:ldb*K);
|
||||
cl_mem B_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, B, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
size = sizeof(float)*(ldc*M);
|
||||
cl_mem C_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, C, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {M, N};
|
||||
|
||||
clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, 0, 0, 0, 0);
|
||||
clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
|
||||
|
||||
clReleaseMemObject(A_gpu);
|
||||
clReleaseMemObject(B_gpu);
|
||||
clReleaseMemObject(C_gpu);
|
||||
|
||||
}
|
||||
*/
|
170
src/image.c
170
src/image.c
@ -113,6 +113,7 @@ image copy_image(image p)
|
||||
return copy;
|
||||
}
|
||||
|
||||
|
||||
void show_image(image p, char *name)
|
||||
{
|
||||
int i,j,k;
|
||||
@ -136,7 +137,7 @@ void show_image(image p, char *name)
|
||||
}
|
||||
}
|
||||
free_image(copy);
|
||||
if(disp->height < 500 || disp->width < 500){
|
||||
if(disp->height < 500 || disp->width < 500 || disp->height > 1000){
|
||||
int w = 1500;
|
||||
int h = w*p.h/p.w;
|
||||
if(h > 1000){
|
||||
@ -152,6 +153,30 @@ void show_image(image p, char *name)
|
||||
cvReleaseImage(&disp);
|
||||
}
|
||||
|
||||
void save_image(image p, char *name)
|
||||
{
|
||||
int i,j,k;
|
||||
image copy = copy_image(p);
|
||||
normalize_image(copy);
|
||||
|
||||
char buff[256];
|
||||
//sprintf(buff, "%s (%d)", name, windows);
|
||||
sprintf(buff, "%s.png", name);
|
||||
|
||||
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
|
||||
int step = disp->widthStep;
|
||||
for(i = 0; i < p.h; ++i){
|
||||
for(j = 0; j < p.w; ++j){
|
||||
for(k= 0; k < p.c; ++k){
|
||||
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255);
|
||||
}
|
||||
}
|
||||
}
|
||||
free_image(copy);
|
||||
cvSaveImage(buff, disp,0);
|
||||
cvReleaseImage(&disp);
|
||||
}
|
||||
|
||||
void show_image_layers(image p, char *name)
|
||||
{
|
||||
int i;
|
||||
@ -227,7 +252,19 @@ image make_random_image(int h, int w, int c)
|
||||
return out;
|
||||
}
|
||||
|
||||
void add_scalar_image(image m, float s)
|
||||
void add_into_image(image src, image dest, int h, int w)
|
||||
{
|
||||
int i,j,k;
|
||||
for(k = 0; k < src.c; ++k){
|
||||
for(i = 0; i < src.h; ++i){
|
||||
for(j = 0; j < src.w; ++j){
|
||||
add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void translate_image(image m, float s)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s;
|
||||
@ -404,6 +441,20 @@ image get_image_layer(image m, int l)
|
||||
}
|
||||
return out;
|
||||
}
|
||||
image get_sub_image(image m, int h, int w, int dh, int dw)
|
||||
{
|
||||
image out = make_image(dh, dw, m.c);
|
||||
int i,j,k;
|
||||
for(k = 0; k < out.c; ++k){
|
||||
for(i = 0; i < dh; ++i){
|
||||
for(j = 0; j < dw; ++j){
|
||||
float val = get_pixel(m, h+i, w+j, k);
|
||||
set_pixel(out, i, j, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
float get_pixel(image m, int x, int y, int c)
|
||||
{
|
||||
@ -594,6 +645,121 @@ void print_image(image m)
|
||||
for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]);
|
||||
printf("\n");
|
||||
}
|
||||
image collapse_images_vert(image *ims, int n)
|
||||
{
|
||||
int color = 1;
|
||||
int border = 1;
|
||||
int h,w,c;
|
||||
w = ims[0].w;
|
||||
h = (ims[0].h + border) * n - border;
|
||||
c = ims[0].c;
|
||||
if(c != 3 || !color){
|
||||
w = (w+border)*c - border;
|
||||
c = 1;
|
||||
}
|
||||
|
||||
image filters = make_image(h,w,c);
|
||||
int i,j;
|
||||
for(i = 0; i < n; ++i){
|
||||
int h_offset = i*(ims[0].h+border);
|
||||
image copy = copy_image(ims[i]);
|
||||
//normalize_image(copy);
|
||||
if(c == 3 && color){
|
||||
embed_image(copy, filters, h_offset, 0);
|
||||
}
|
||||
else{
|
||||
for(j = 0; j < copy.c; ++j){
|
||||
int w_offset = j*(ims[0].w+border);
|
||||
image layer = get_image_layer(copy, j);
|
||||
embed_image(layer, filters, h_offset, w_offset);
|
||||
free_image(layer);
|
||||
}
|
||||
}
|
||||
free_image(copy);
|
||||
}
|
||||
return filters;
|
||||
}
|
||||
|
||||
image collapse_images_horz(image *ims, int n)
|
||||
{
|
||||
int color = 1;
|
||||
int border = 1;
|
||||
int h,w,c;
|
||||
int size = ims[0].h;
|
||||
h = size;
|
||||
w = (ims[0].w + border) * n - border;
|
||||
c = ims[0].c;
|
||||
if(c != 3 || !color){
|
||||
h = (h+border)*c - border;
|
||||
c = 1;
|
||||
}
|
||||
|
||||
image filters = make_image(h,w,c);
|
||||
int i,j;
|
||||
for(i = 0; i < n; ++i){
|
||||
int w_offset = i*(size+border);
|
||||
image copy = copy_image(ims[i]);
|
||||
//normalize_image(copy);
|
||||
if(c == 3 && color){
|
||||
embed_image(copy, filters, 0, w_offset);
|
||||
}
|
||||
else{
|
||||
for(j = 0; j < copy.c; ++j){
|
||||
int h_offset = j*(size+border);
|
||||
image layer = get_image_layer(copy, j);
|
||||
embed_image(layer, filters, h_offset, w_offset);
|
||||
free_image(layer);
|
||||
}
|
||||
}
|
||||
free_image(copy);
|
||||
}
|
||||
return filters;
|
||||
}
|
||||
|
||||
void show_images(image *ims, int n, char *window)
|
||||
{
|
||||
image m = collapse_images_vert(ims, n);
|
||||
save_image(m, window);
|
||||
show_image(m, window);
|
||||
free_image(m);
|
||||
}
|
||||
|
||||
image grid_images(image **ims, int h, int w)
|
||||
{
|
||||
int i;
|
||||
image *rows = calloc(h, sizeof(image));
|
||||
for(i = 0; i < h; ++i){
|
||||
rows[i] = collapse_images_horz(ims[i], w);
|
||||
}
|
||||
image out = collapse_images_vert(rows, h);
|
||||
for(i = 0; i < h; ++i){
|
||||
free_image(rows[i]);
|
||||
}
|
||||
free(rows);
|
||||
return out;
|
||||
}
|
||||
|
||||
void test_grid()
|
||||
{
|
||||
int i,j;
|
||||
int num = 3;
|
||||
int topk = 3;
|
||||
image **vizs = calloc(num, sizeof(image*));
|
||||
for(i = 0; i < num; ++i){
|
||||
vizs[i] = calloc(topk, sizeof(image));
|
||||
for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3);
|
||||
}
|
||||
image grid = grid_images(vizs, num, topk);
|
||||
save_image(grid, "Test Grid");
|
||||
free_image(grid);
|
||||
}
|
||||
|
||||
void show_images_grid(image **ims, int h, int w, char *window)
|
||||
{
|
||||
image out = grid_images(ims, h, w);
|
||||
show_image(out, window);
|
||||
free_image(out);
|
||||
}
|
||||
|
||||
void free_image(image m)
|
||||
{
|
||||
|
13
src/image.h
13
src/image.h
@ -1,6 +1,7 @@
|
||||
#ifndef IMAGE_H
|
||||
#define IMAGE_H
|
||||
|
||||
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
typedef struct {
|
||||
@ -12,7 +13,7 @@ typedef struct {
|
||||
|
||||
image image_distance(image a, image b);
|
||||
void scale_image(image m, float s);
|
||||
void add_scalar_image(image m, float s);
|
||||
void translate_image(image m, float s);
|
||||
void normalize_image(image p);
|
||||
void z_normalize_image(image p);
|
||||
void threshold_image(image p, float t);
|
||||
@ -21,11 +22,20 @@ void rotate_image(image m);
|
||||
void subtract_image(image a, image b);
|
||||
float avg_image_layer(image m, int l);
|
||||
void embed_image(image source, image dest, int h, int w);
|
||||
void add_into_image(image src, image dest, int h, int w);
|
||||
image collapse_image_layers(image source, int border);
|
||||
image collapse_images_horz(image *ims, int n);
|
||||
image collapse_images_vert(image *ims, int n);
|
||||
image get_sub_image(image m, int h, int w, int dh, int dw);
|
||||
|
||||
void show_image(image p, char *name);
|
||||
void save_image(image p, char *name);
|
||||
void show_images(image *ims, int n, char *window);
|
||||
void show_image_layers(image p, char *name);
|
||||
void show_image_collapsed(image p, char *name);
|
||||
void show_images_grid(image **ims, int h, int w, char *window);
|
||||
void test_grid();
|
||||
image grid_images(image **ims, int h, int w);
|
||||
void print_image(image m);
|
||||
|
||||
image make_image(int h, int w, int c);
|
||||
@ -39,6 +49,7 @@ image ipl_to_image(IplImage* src);
|
||||
|
||||
float get_pixel(image m, int x, int y, int c);
|
||||
float get_pixel_extend(image m, int x, int y, int c);
|
||||
void add_pixel(image m, int x, int y, int c, float val);
|
||||
void set_pixel(image m, int x, int y, int c, float val);
|
||||
|
||||
image get_image_layer(image m, int l);
|
||||
|
@ -17,10 +17,12 @@ image get_maxpool_delta(maxpool_layer layer)
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
}
|
||||
|
||||
maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride)
|
||||
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride)
|
||||
{
|
||||
c = c*batch;
|
||||
fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d stride\n", h,w,c,stride);
|
||||
maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
|
||||
layer->batch = batch;
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
@ -30,6 +32,15 @@ maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride)
|
||||
return layer;
|
||||
}
|
||||
|
||||
void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
|
||||
layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
|
||||
}
|
||||
|
||||
void forward_maxpool_layer(const maxpool_layer layer, float *in)
|
||||
{
|
||||
image input = float_to_image(layer.h, layer.w, layer.c, in);
|
||||
|
@ -4,6 +4,7 @@
|
||||
#include "image.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int stride;
|
||||
float *delta;
|
||||
@ -11,7 +12,8 @@ typedef struct {
|
||||
} maxpool_layer;
|
||||
|
||||
image get_maxpool_image(maxpool_layer layer);
|
||||
maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride);
|
||||
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride);
|
||||
void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
|
||||
void forward_maxpool_layer(const maxpool_layer layer, float *in);
|
||||
void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta);
|
||||
|
||||
|
148
src/mini_blas.c
148
src/mini_blas.c
@ -3,6 +3,8 @@
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <string.h>
|
||||
#include "mini_blas.h"
|
||||
|
||||
void pm(int M, int N, float *A)
|
||||
{
|
||||
@ -17,42 +19,12 @@ void pm(int M, int N, float *A)
|
||||
}
|
||||
|
||||
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
// Assume beta = 1 LULZ
|
||||
int i,j,k;
|
||||
if(TB && !TA){
|
||||
for(i = 0; i < M; ++i){
|
||||
for(j = 0; j < N; ++j){
|
||||
register float sum = 0;
|
||||
for(k = 0; k < K; ++k){
|
||||
sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
|
||||
}
|
||||
C[i*ldc+j] += sum;
|
||||
}
|
||||
}
|
||||
}else if(TA && !TB){
|
||||
for(i = 0; i < M; ++i){
|
||||
for(k = 0; k < K; ++k){
|
||||
register float A_PART = ALPHA*A[k*lda+i];
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc+j] += A_PART*B[k*ldb+j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
for(i = 0; i < M; ++i){
|
||||
for(k = 0; k < K; ++k){
|
||||
register float A_PART = ALPHA*A[i*lda+k];
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc+j] += A_PART*B[k*ldb+j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
gpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
}
|
||||
|
||||
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)
|
||||
@ -150,16 +122,26 @@ float *random_matrix(int rows, int cols)
|
||||
|
||||
void time_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
float *a = random_matrix(m,k);
|
||||
float *b = random_matrix(k,n);
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<1000; ++i){
|
||||
gemm(TA,TB,m,n,k,1,a,k,b,n,1,c,n);
|
||||
cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_blas()
|
||||
@ -167,9 +149,97 @@ void test_blas()
|
||||
time_random_matrix(0,0,100,100,100);
|
||||
time_random_matrix(1,0,100,100,100);
|
||||
time_random_matrix(0,1,100,100,100);
|
||||
time_random_matrix(1,1,100,100,100);
|
||||
|
||||
time_random_matrix(0,1,1000,100,100);
|
||||
time_random_matrix(0,0,1000,100,100);
|
||||
time_random_matrix(1,0,1000,100,100);
|
||||
time_random_matrix(0,1,1000,100,100);
|
||||
time_random_matrix(1,1,1000,100,100);
|
||||
|
||||
|
||||
}
|
||||
|
||||
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<1000; ++i){
|
||||
gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
srand(0);
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
float *c_gpu = random_matrix(m,n);
|
||||
memset(c, 0, m*n*sizeof(float));
|
||||
memset(c_gpu, 0, m*n*sizeof(float));
|
||||
int i;
|
||||
//pm(m,k,b);
|
||||
gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
||||
//pm(m, n, c_gpu);
|
||||
cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
//pm(m, n, c);
|
||||
double sse = 0;
|
||||
for(i = 0; i < m*n; ++i) {
|
||||
//printf("%f %f\n", c[i], c_gpu[i]);
|
||||
sse += pow(c[i]-c_gpu[i], 2);
|
||||
}
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g MSE\n",m,k,k,n, TA, TB, sse/(m*n));
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_blas()
|
||||
{
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
test_gpu_accuracy(1,0,17,10,10);
|
||||
test_gpu_accuracy(0,1,17,10,10);
|
||||
test_gpu_accuracy(1,1,17,10,10);
|
||||
|
||||
test_gpu_accuracy(0,0,1000,10,100);
|
||||
test_gpu_accuracy(1,0,1000,10,100);
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
|
||||
time_gpu_random_matrix(0,0,1000,1000,100);
|
||||
time_random_matrix(0,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(0,1,1000,1000,100);
|
||||
time_random_matrix(0,1,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,0,1000,1000,100);
|
||||
time_random_matrix(1,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,1,1000,1000,100);
|
||||
time_random_matrix(1,1,1000,1000,100);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -4,6 +4,7 @@ void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
float *random_matrix(int rows, int cols);
|
||||
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix);
|
||||
void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix);
|
||||
void im2col_cpu(float* data_im, const int channels,
|
||||
@ -13,3 +14,15 @@ void col2im_cpu(float* data_col, const int channels,
|
||||
const int height, const int width, const int ksize, const int stride,
|
||||
float* data_im);
|
||||
void test_blas();
|
||||
|
||||
void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
void test_gpu_blas();
|
||||
|
153
src/network.c
153
src/network.c
@ -8,12 +8,14 @@
|
||||
#include "convolutional_layer.h"
|
||||
//#include "old_conv.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
|
||||
network make_network(int n)
|
||||
network make_network(int n, int batch)
|
||||
{
|
||||
network net;
|
||||
net.n = n;
|
||||
net.batch = batch;
|
||||
net.layers = calloc(net.n, sizeof(void *));
|
||||
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
||||
net.outputs = 0;
|
||||
@ -25,10 +27,11 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n");
|
||||
if(first) fprintf(fp, "height=%d\n"
|
||||
if(first) fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->h, l->w, l->c);
|
||||
l->batch,l->h, l->w, l->c);
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
@ -38,17 +41,28 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
/*
|
||||
int j,k;
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->n; ++i){
|
||||
for(j = l->c-1; j >= 0; --j){
|
||||
for(k = 0; k < l->size*l->size; ++k){
|
||||
fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n");
|
||||
if(first) fprintf(fp, "input=%d\n", l->inputs);
|
||||
if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
fprintf(fp, "output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
"activation=%s\n",
|
||||
l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
||||
@ -58,17 +72,32 @@ void print_connected_cfg(FILE *fp, connected_layer *l, int first)
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n");
|
||||
if(first) fprintf(fp, "height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->h, l->w, l->c);
|
||||
if(first) fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->batch,l->h, l->w, l->c);
|
||||
fprintf(fp, "stride=%d\n\n", l->stride);
|
||||
}
|
||||
|
||||
void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
|
||||
{
|
||||
fprintf(fp, "[localresponsenormalization]\n");
|
||||
if(first) fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->batch,l->h, l->w, l->c);
|
||||
fprintf(fp, "size=%d\n"
|
||||
"alpha=%g\n"
|
||||
"beta=%g\n"
|
||||
"kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
|
||||
}
|
||||
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n");
|
||||
if(first) fprintf(fp, "input=%d\n", l->inputs);
|
||||
if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
@ -85,6 +114,8 @@ void save_network(network net, char *filename)
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
|
||||
else if(net.types[i] == NORMALIZATION)
|
||||
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
|
||||
}
|
||||
@ -115,6 +146,11 @@ void forward_network(network net, float *input)
|
||||
forward_maxpool_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
forward_normalization_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -132,6 +168,9 @@ void update_network(network net, float step, float momentum, float decay)
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer, step, momentum, decay);
|
||||
@ -153,6 +192,9 @@ float *get_network_output_layer(network net, int i)
|
||||
} else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
} else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -191,11 +233,11 @@ float calculate_error_network(network net, float *truth)
|
||||
float *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
printf("%f, ", out[i]);
|
||||
//printf("%f, ", out[i]);
|
||||
delta[i] = truth[i] - out[i];
|
||||
sum += delta[i]*delta[i];
|
||||
}
|
||||
printf("\n");
|
||||
//printf("\n");
|
||||
return sum;
|
||||
}
|
||||
|
||||
@ -230,6 +272,10 @@ float backward_network(network net, float *input, float *truth)
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
|
||||
@ -258,19 +304,26 @@ float train_network_sgd(network net, data d, int n, float step, float momentum,f
|
||||
int i;
|
||||
float error = 0;
|
||||
int correct = 0;
|
||||
int pos = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
float *y = d.y.vals[index];
|
||||
int class = get_predicted_class_network(net);
|
||||
correct += (y[class]?1:0);
|
||||
if(y[1]){
|
||||
error += err;
|
||||
++pos;
|
||||
}
|
||||
|
||||
|
||||
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
||||
//if((i+1)%10 == 0){
|
||||
// printf("%d: %f\n", (i+1), (float)correct/(i+1));
|
||||
//}
|
||||
}
|
||||
printf("Accuracy: %f\n",(float) correct/n);
|
||||
return error/n;
|
||||
//printf("Accuracy: %f\n",(float) correct/n);
|
||||
return error/pos;
|
||||
}
|
||||
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
@ -304,7 +357,7 @@ void train_network(network net, data d, float step, float momentum, float decay)
|
||||
}
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
printf("Accuracy: %f\n", (float)correct/d.X.rows);
|
||||
fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
|
||||
}
|
||||
|
||||
int get_network_output_size_layer(network net, int i)
|
||||
@ -330,29 +383,63 @@ int get_network_output_size_layer(network net, int i)
|
||||
return 0;
|
||||
}
|
||||
|
||||
int reset_network_size(network net, int h, int w, int c)
|
||||
/*
|
||||
int resize_network(network net, int h, int w, int c)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
image output = get_convolutional_image(*layer);
|
||||
h = output.h;
|
||||
w = output.w;
|
||||
c = output.c;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
image output = get_maxpool_image(*layer);
|
||||
h = output.h;
|
||||
w = output.w;
|
||||
c = output.c;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
|
||||
int resize_network(network net, int h, int w, int c)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
resize_convolutional_layer(layer, h, w, c);
|
||||
image output = get_convolutional_image(*layer);
|
||||
h = output.h;
|
||||
w = output.w;
|
||||
c = output.c;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
}else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
resize_maxpool_layer(layer, h, w, c);
|
||||
image output = get_maxpool_image(*layer);
|
||||
h = output.h;
|
||||
w = output.w;
|
||||
c = output.c;
|
||||
}else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer *layer = (normalization_layer *)net.layers[i];
|
||||
resize_normalization_layer(layer, h, w, c);
|
||||
image output = get_normalization_image(*layer);
|
||||
h = output.h;
|
||||
w = output.w;
|
||||
c = output.c;
|
||||
}else{
|
||||
error("Cannot resize this type of layer");
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
@ -374,6 +461,10 @@ image get_network_image_layer(network net, int i)
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return get_maxpool_image(layer);
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
return get_normalization_image(layer);
|
||||
}
|
||||
return make_empty_image(0,0,0);
|
||||
}
|
||||
|
||||
@ -389,13 +480,18 @@ image get_network_image(network net)
|
||||
|
||||
void visualize_network(network net)
|
||||
{
|
||||
image *prev = 0;
|
||||
int i;
|
||||
char buff[256];
|
||||
for(i = 0; i < net.n; ++i){
|
||||
sprintf(buff, "Layer %d", i);
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
visualize_convolutional_layer(layer, buff);
|
||||
prev = visualize_convolutional_layer(layer, buff, prev);
|
||||
}
|
||||
if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
visualize_normalization_layer(layer, buff);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -467,3 +563,4 @@ float network_accuracy(network net, data d)
|
||||
return acc;
|
||||
}
|
||||
|
||||
|
||||
|
@ -9,18 +9,20 @@ typedef enum {
|
||||
CONVOLUTIONAL,
|
||||
CONNECTED,
|
||||
MAXPOOL,
|
||||
SOFTMAX
|
||||
SOFTMAX,
|
||||
NORMALIZATION
|
||||
} LAYER_TYPE;
|
||||
|
||||
typedef struct {
|
||||
int n;
|
||||
int batch;
|
||||
void **layers;
|
||||
LAYER_TYPE *types;
|
||||
int outputs;
|
||||
float *output;
|
||||
} network;
|
||||
|
||||
network make_network(int n);
|
||||
network make_network(int n, int batch);
|
||||
void forward_network(network net, float *input);
|
||||
float backward_network(network net, float *input, float *truth);
|
||||
void update_network(network net, float step, float momentum, float decay);
|
||||
@ -41,7 +43,7 @@ int get_predicted_class_network(network net);
|
||||
void print_network(network net);
|
||||
void visualize_network(network net);
|
||||
void save_network(network net, char *filename);
|
||||
int reset_network_size(network net, int h, int w, int c);
|
||||
int resize_network(network net, int h, int w, int c);
|
||||
|
||||
#endif
|
||||
|
||||
|
96
src/normalization_layer.c
Normal file
96
src/normalization_layer.c
Normal file
@ -0,0 +1,96 @@
|
||||
#include "normalization_layer.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_normalization_image(normalization_layer layer)
|
||||
{
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.output);
|
||||
}
|
||||
|
||||
image get_normalization_delta(normalization_layer layer)
|
||||
{
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
}
|
||||
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
|
||||
{
|
||||
fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
|
||||
normalization_layer *layer = calloc(1, sizeof(normalization_layer));
|
||||
layer->batch = batch;
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->kappa = kappa;
|
||||
layer->size = size;
|
||||
layer->alpha = alpha;
|
||||
layer->beta = beta;
|
||||
layer->output = calloc(h * w * c * batch, sizeof(float));
|
||||
layer->delta = calloc(h * w * c * batch, sizeof(float));
|
||||
layer->sums = calloc(h*w, sizeof(float));
|
||||
return layer;
|
||||
}
|
||||
|
||||
void resize_normalization_layer(normalization_layer *layer, int h, int w, int c)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->output = realloc(layer->output, h * w * c * layer->batch * sizeof(float));
|
||||
layer->delta = realloc(layer->delta, h * w * c * layer->batch * sizeof(float));
|
||||
layer->sums = realloc(layer->sums, h*w * sizeof(float));
|
||||
}
|
||||
|
||||
void add_square_array(float *src, float *dest, int n)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
dest[i] += src[i]*src[i];
|
||||
}
|
||||
}
|
||||
void sub_square_array(float *src, float *dest, int n)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
dest[i] -= src[i]*src[i];
|
||||
}
|
||||
}
|
||||
|
||||
void forward_normalization_layer(const normalization_layer layer, float *in)
|
||||
{
|
||||
int i,j,k;
|
||||
memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
|
||||
int imsize = layer.h*layer.w;
|
||||
for(j = 0; j < layer.size/2; ++j){
|
||||
if(j < layer.c) add_square_array(in+j*imsize, layer.sums, imsize);
|
||||
}
|
||||
for(k = 0; k < layer.c; ++k){
|
||||
int next = k+layer.size/2;
|
||||
int prev = k-layer.size/2-1;
|
||||
if(next < layer.c) add_square_array(in+next*imsize, layer.sums, imsize);
|
||||
if(prev > 0) sub_square_array(in+prev*imsize, layer.sums, imsize);
|
||||
for(i = 0; i < imsize; ++i){
|
||||
layer.output[k*imsize + i] = in[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta)
|
||||
{
|
||||
//TODO!
|
||||
}
|
||||
|
||||
void visualize_normalization_layer(normalization_layer layer, char *window)
|
||||
{
|
||||
image delta = get_normalization_image(layer);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Output", window);
|
||||
show_image(dc, buff);
|
||||
save_image(dc, buff);
|
||||
free_image(dc);
|
||||
}
|
26
src/normalization_layer.h
Normal file
26
src/normalization_layer.h
Normal file
@ -0,0 +1,26 @@
|
||||
#ifndef NORMALIZATION_LAYER_H
|
||||
#define NORMALIZATION_LAYER_H
|
||||
|
||||
#include "image.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int size;
|
||||
float alpha;
|
||||
float beta;
|
||||
float kappa;
|
||||
float *delta;
|
||||
float *output;
|
||||
float *sums;
|
||||
} normalization_layer;
|
||||
|
||||
image get_normalization_image(normalization_layer layer);
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
|
||||
void resize_normalization_layer(normalization_layer *layer, int h, int w, int c);
|
||||
void forward_normalization_layer(const normalization_layer layer, float *in);
|
||||
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta);
|
||||
void visualize_normalization_layer(normalization_layer layer, char *window);
|
||||
|
||||
#endif
|
||||
|
77
src/opencl.c
Normal file
77
src/opencl.c
Normal file
@ -0,0 +1,77 @@
|
||||
#include "opencl.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
cl_info cl = {0};
|
||||
|
||||
void check_error(cl_info info)
|
||||
{
|
||||
if (info.error != CL_SUCCESS) {
|
||||
printf("\n Error number %d", info.error);
|
||||
}
|
||||
}
|
||||
|
||||
cl_info cl_init()
|
||||
{
|
||||
cl_info info;
|
||||
info.initialized = 0;
|
||||
cl_uint platforms, devices;
|
||||
// Fetch the Platform and Device IDs; we only want one.
|
||||
info.error=clGetPlatformIDs(1, &info.platform, &platforms);
|
||||
check_error(info);
|
||||
info.error=clGetDeviceIDs(info.platform, CL_DEVICE_TYPE_ALL, 1, &info.device, &devices);
|
||||
check_error(info);
|
||||
|
||||
cl_context_properties properties[]={
|
||||
CL_CONTEXT_PLATFORM, (cl_context_properties)info.platform,
|
||||
0};
|
||||
// Note that nVidia's OpenCL requires the platform property
|
||||
info.context=clCreateContext(properties, 1, &info.device, 0, 0, &info.error);
|
||||
check_error(info);
|
||||
info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
|
||||
check_error(info);
|
||||
info.initialized = 1;
|
||||
return info;
|
||||
}
|
||||
|
||||
cl_program cl_fprog(char *filename, char *options, cl_info info)
|
||||
{
|
||||
size_t srcsize;
|
||||
char src[8192];
|
||||
memset(src, 0, 8192);
|
||||
FILE *fil=fopen(filename,"r");
|
||||
srcsize=fread(src, sizeof src, 1, fil);
|
||||
fclose(fil);
|
||||
const char *srcptr[]={src};
|
||||
// Submit the source code of the example kernel to OpenCL
|
||||
cl_program prog=clCreateProgramWithSource(info.context,1, srcptr, &srcsize, &info.error);
|
||||
check_error(info);
|
||||
char build_c[4096];
|
||||
// and compile it (after this we could extract the compiled version)
|
||||
info.error=clBuildProgram(prog, 0, 0, options, 0, 0);
|
||||
if ( info.error != CL_SUCCESS ) {
|
||||
fprintf(stderr, "Error Building Program: %d\n", info.error);
|
||||
clGetProgramBuildInfo( prog, info.device, CL_PROGRAM_BUILD_LOG, 4096, build_c, 0);
|
||||
fprintf(stderr, "Build Log for %s program:\n%s\n", filename, build_c);
|
||||
}
|
||||
return prog;
|
||||
}
|
||||
|
||||
void cl_setup()
|
||||
{
|
||||
if(!cl.initialized){
|
||||
cl = cl_init();
|
||||
}
|
||||
}
|
||||
|
||||
cl_kernel get_kernel(char *filename, char *kernelname, char *options)
|
||||
{
|
||||
cl_setup();
|
||||
cl_program prog = cl_fprog(filename, options, cl);
|
||||
cl_kernel kernel=clCreateKernel(prog, kernelname, &cl.error);
|
||||
check_error(cl);
|
||||
return kernel;
|
||||
}
|
||||
|
||||
|
21
src/opencl.h
Normal file
21
src/opencl.h
Normal file
@ -0,0 +1,21 @@
|
||||
#ifdef __APPLE__
|
||||
#include <OpenCL/opencl.h>
|
||||
#else
|
||||
#include <CL/cl.h>
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
int initialized;
|
||||
cl_int error;
|
||||
cl_platform_id platform;
|
||||
cl_device_id device;
|
||||
cl_context context;
|
||||
cl_command_queue queue;
|
||||
}cl_info;
|
||||
|
||||
extern cl_info cl;
|
||||
|
||||
void cl_setup();
|
||||
void check_error(cl_info info);
|
||||
cl_kernel get_kernel(char *filename, char *kernelname, char *options);
|
||||
|
54
src/parser.c
54
src/parser.c
@ -7,6 +7,7 @@
|
||||
#include "convolutional_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "list.h"
|
||||
#include "option_list.h"
|
||||
@ -21,6 +22,7 @@ int is_convolutional(section *s);
|
||||
int is_connected(section *s);
|
||||
int is_maxpool(section *s);
|
||||
int is_softmax(section *s);
|
||||
int is_normalization(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
void free_section(section *s)
|
||||
@ -52,6 +54,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
@ -59,7 +62,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
|
||||
convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
@ -90,10 +93,11 @@ connected_layer *parse_connected(list *options, network net, int count)
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(input, output, activation);
|
||||
connected_layer *layer = make_connected_layer(net.batch, input, output, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
@ -120,10 +124,11 @@ softmax_layer *parse_softmax(list *options, network net, int count)
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(input);
|
||||
softmax_layer *layer = make_softmax_layer(net.batch, input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
@ -136,6 +141,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
@ -143,7 +149,31 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
|
||||
maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
normalization_layer *parse_normalization(list *options, network net, int count)
|
||||
{
|
||||
int h,w,c;
|
||||
int size = option_find_int(options, "size",1);
|
||||
float alpha = option_find_float(options, "alpha", 0.);
|
||||
float beta = option_find_float(options, "beta", 1.);
|
||||
float kappa = option_find_float(options, "kappa", 1.);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
normalization_layer *layer = make_normalization_layer(net.batch,h,w,c,size, alpha, beta, kappa);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
@ -151,7 +181,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
network parse_network_cfg(char *filename)
|
||||
{
|
||||
list *sections = read_cfg(filename);
|
||||
network net = make_network(sections->size);
|
||||
network net = make_network(sections->size, 0);
|
||||
|
||||
node *n = sections->front;
|
||||
int count = 0;
|
||||
@ -162,18 +192,27 @@ network parse_network_cfg(char *filename)
|
||||
convolutional_layer *layer = parse_convolutional(options, net, count);
|
||||
net.types[count] = CONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_connected(s)){
|
||||
connected_layer *layer = parse_connected(options, net, count);
|
||||
net.types[count] = CONNECTED;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_softmax(s)){
|
||||
softmax_layer *layer = parse_softmax(options, net, count);
|
||||
net.types[count] = SOFTMAX;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_maxpool(s)){
|
||||
maxpool_layer *layer = parse_maxpool(options, net, count);
|
||||
net.types[count] = MAXPOOL;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_normalization(s)){
|
||||
normalization_layer *layer = parse_normalization(options, net, count);
|
||||
net.types[count] = NORMALIZATION;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
@ -208,6 +247,11 @@ int is_softmax(section *s)
|
||||
return (strcmp(s->type, "[soft]")==0
|
||||
|| strcmp(s->type, "[softmax]")==0);
|
||||
}
|
||||
int is_normalization(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[lrnorm]")==0
|
||||
|| strcmp(s->type, "[localresponsenormalization]")==0);
|
||||
}
|
||||
|
||||
int read_option(char *s, list *options)
|
||||
{
|
||||
|
@ -3,13 +3,14 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
softmax_layer *make_softmax_layer(int inputs)
|
||||
softmax_layer *make_softmax_layer(int batch, int inputs)
|
||||
{
|
||||
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
|
||||
softmax_layer *layer = calloc(1, sizeof(softmax_layer));
|
||||
layer->batch = batch;
|
||||
layer->inputs = inputs;
|
||||
layer->output = calloc(inputs, sizeof(float));
|
||||
layer->delta = calloc(inputs, sizeof(float));
|
||||
layer->output = calloc(inputs*batch, sizeof(float));
|
||||
layer->delta = calloc(inputs*batch, sizeof(float));
|
||||
return layer;
|
||||
}
|
||||
|
||||
@ -28,28 +29,30 @@ void forward_softmax_layer(const softmax_layer layer, float *input)
|
||||
*/
|
||||
void forward_softmax_layer(const softmax_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = 0;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
if(input[i] > largest) largest = input[i];
|
||||
}
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
sum += exp(input[i]-largest);
|
||||
//printf("%f, ", input[i]);
|
||||
}
|
||||
//printf("\n");
|
||||
if(sum) sum = largest+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
layer.output[i] = exp(input[i]-sum);
|
||||
int i,b;
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
float sum = 0;
|
||||
float largest = 0;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
|
||||
}
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
sum += exp(input[i+b*layer.inputs]-largest);
|
||||
//printf("%f, ", input[i]);
|
||||
}
|
||||
//printf("\n");
|
||||
if(sum) sum = largest+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void backward_softmax_layer(const softmax_layer layer, float *input, float *delta)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
for(i = 0; i < layer.inputs*layer.batch; ++i){
|
||||
delta[i] = layer.delta[i];
|
||||
}
|
||||
}
|
||||
|
@ -3,11 +3,12 @@
|
||||
|
||||
typedef struct {
|
||||
int inputs;
|
||||
int batch;
|
||||
float *delta;
|
||||
float *output;
|
||||
} softmax_layer;
|
||||
|
||||
softmax_layer *make_softmax_layer(int inputs);
|
||||
softmax_layer *make_softmax_layer(int batch, int inputs);
|
||||
void forward_softmax_layer(const softmax_layer layer, float *input);
|
||||
void backward_softmax_layer(const softmax_layer layer, float *input, float *delta);
|
||||
|
||||
|
1226
src/tests.c
1226
src/tests.c
File diff suppressed because it is too large
Load Diff
BIN
test_color.png
BIN
test_color.png
Binary file not shown.
Before Width: | Height: | Size: 1.1 KiB |
BIN
test_dog.jpg
BIN
test_dog.jpg
Binary file not shown.
Before Width: | Height: | Size: 30 KiB |
BIN
test_hinton.jpg
BIN
test_hinton.jpg
Binary file not shown.
Before Width: | Height: | Size: 16 KiB |
Loading…
Reference in New Issue
Block a user