mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
ZED 3D Camera support added to ./uselib (yolo_console_cpp.exe) example
This commit is contained in:
@ -25,6 +25,7 @@ struct bbox_t {
|
||||
unsigned int obj_id; // class of object - from range [0, classes-1]
|
||||
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
|
||||
unsigned int frames_counter; // counter of frames on which the object was detected
|
||||
float x_3d, y_3d, z_3d; // center of object (in Meters) if ZED 3D Camera is used
|
||||
};
|
||||
|
||||
struct image_t {
|
||||
@ -60,8 +61,8 @@ extern "C" LIB_API int get_device_name(int gpu, char* deviceName);
|
||||
class Detector {
|
||||
std::shared_ptr<void> detector_gpu_ptr;
|
||||
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
|
||||
const int cur_gpu_id;
|
||||
public:
|
||||
const int cur_gpu_id;
|
||||
float nms = .4;
|
||||
bool wait_stream;
|
||||
|
||||
@ -79,6 +80,11 @@ public:
|
||||
LIB_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
|
||||
int const frames_story = 5, int const max_dist = 40);
|
||||
|
||||
LIB_API void *get_cuda_context();
|
||||
|
||||
LIB_API bool send_json_http(std::vector<bbox_t> cur_bbox_vec, std::vector<std::string> obj_names, int frame_id,
|
||||
std::string filename = "", int timeout = 400000, int port = 8070);
|
||||
|
||||
std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
|
||||
{
|
||||
if (img.data == NULL)
|
||||
@ -115,7 +121,10 @@ public:
|
||||
static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
|
||||
{
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
|
||||
if (img_src.channels() == 4) cv::cvtColor(img_src, img, cv::COLOR_RGBA2BGR);
|
||||
else if (img_src.channels() == 3) cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
|
||||
else if (img_src.channels() == 1) cv::cvtColor(img_src, img, cv::COLOR_GRAY2BGR);
|
||||
else std::cerr << " Warning: img_src.channels() is not 1, 3 or 4. It is = " << img_src.channels() << std::endl;
|
||||
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
|
||||
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
|
||||
*image_ptr = ipl_to_image(ipl_small.get());
|
||||
@ -166,7 +175,7 @@ private:
|
||||
#endif // OPENCV
|
||||
|
||||
};
|
||||
|
||||
// --------------------------------------------------------------------------------
|
||||
|
||||
|
||||
#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
|
||||
@ -183,7 +192,7 @@ public:
|
||||
const int flow_error;
|
||||
|
||||
|
||||
Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
|
||||
Tracker_optflow(int _gpu_id = 0, int win_size = 15, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
|
||||
gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
|
||||
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
|
||||
{
|
||||
@ -249,18 +258,32 @@ public:
|
||||
if (old_gpu_id != gpu_id)
|
||||
cv::cuda::setDevice(gpu_id);
|
||||
|
||||
if (src_mat.channels() == 3) {
|
||||
if (src_mat.channels() == 1 || src_mat.channels() == 3 || src_mat.channels() == 4) {
|
||||
if (src_mat_gpu.cols == 0) {
|
||||
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
|
||||
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
|
||||
}
|
||||
|
||||
update_cur_bbox_vec(_cur_bbox_vec);
|
||||
if (src_mat.channels() == 1) {
|
||||
src_mat_gpu.upload(src_mat, stream);
|
||||
src_mat_gpu.copyTo(src_grey_gpu);
|
||||
}
|
||||
else if (src_mat.channels() == 3) {
|
||||
src_mat_gpu.upload(src_mat, stream);
|
||||
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
|
||||
}
|
||||
else if (src_mat.channels() == 4) {
|
||||
src_mat_gpu.upload(src_mat, stream);
|
||||
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGRA2GRAY, 1, stream);
|
||||
}
|
||||
else {
|
||||
std::cerr << " Warning: src_mat.channels() is not: 1, 3 or 4. It is = " << src_mat.channels() << " \n";
|
||||
return;
|
||||
}
|
||||
|
||||
//src_grey_gpu.upload(src_mat, stream); // use BGR
|
||||
src_mat_gpu.upload(src_mat, stream);
|
||||
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
|
||||
}
|
||||
update_cur_bbox_vec(_cur_bbox_vec);
|
||||
|
||||
if (old_gpu_id != gpu_id)
|
||||
cv::cuda::setDevice(old_gpu_id);
|
||||
}
|
||||
@ -355,7 +378,7 @@ public:
|
||||
const int flow_error;
|
||||
|
||||
|
||||
Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
|
||||
Tracker_optflow(int win_size = 15, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
|
||||
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
|
||||
{
|
||||
sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
|
||||
@ -396,12 +419,20 @@ public:
|
||||
|
||||
void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
|
||||
{
|
||||
if (new_src_mat.channels() == 3) {
|
||||
|
||||
update_cur_bbox_vec(_cur_bbox_vec);
|
||||
|
||||
if (new_src_mat.channels() == 1) {
|
||||
src_grey = new_src_mat.clone();
|
||||
}
|
||||
else if (new_src_mat.channels() == 3) {
|
||||
cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
|
||||
}
|
||||
else if (new_src_mat.channels() == 4) {
|
||||
cv::cvtColor(new_src_mat, src_grey, CV_BGRA2GRAY, 1);
|
||||
}
|
||||
else {
|
||||
std::cerr << " Warning: new_src_mat.channels() is not: 1, 3 or 4. It is = " << new_src_mat.channels() << " \n";
|
||||
return;
|
||||
}
|
||||
update_cur_bbox_vec(_cur_bbox_vec);
|
||||
}
|
||||
|
||||
|
||||
@ -416,6 +447,7 @@ public:
|
||||
|
||||
if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
|
||||
src_grey = dst_grey.clone();
|
||||
//std::cerr << " Warning: src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols \n";
|
||||
return cur_bbox_vec;
|
||||
}
|
||||
|
||||
@ -611,56 +643,361 @@ public:
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class track_kalman_t
|
||||
{
|
||||
int track_id_counter;
|
||||
std::chrono::steady_clock::time_point global_last_time;
|
||||
float dT;
|
||||
|
||||
public:
|
||||
int max_objects; // max objects for tracking
|
||||
int min_frames; // min frames to consider an object as detected
|
||||
const float max_dist; // max distance (in px) to track with the same ID
|
||||
cv::Size img_size; // max value of x,y,w,h
|
||||
|
||||
struct tst_t {
|
||||
int track_id;
|
||||
int state_id;
|
||||
std::chrono::steady_clock::time_point last_time;
|
||||
int detection_count;
|
||||
tst_t() : track_id(-1), state_id(-1) {}
|
||||
};
|
||||
std::vector<tst_t> track_id_state_id_time;
|
||||
std::vector<bbox_t> result_vec_pred;
|
||||
|
||||
struct one_kalman_t;
|
||||
std::vector<one_kalman_t> kalman_vec;
|
||||
|
||||
struct one_kalman_t
|
||||
{
|
||||
cv::KalmanFilter kf;
|
||||
cv::Mat state;
|
||||
cv::Mat meas;
|
||||
int measSize, stateSize, contrSize;
|
||||
|
||||
void set_delta_time(float dT) {
|
||||
kf.transitionMatrix.at<float>(2) = dT;
|
||||
kf.transitionMatrix.at<float>(9) = dT;
|
||||
}
|
||||
|
||||
void set(bbox_t box)
|
||||
{
|
||||
initialize_kalman();
|
||||
|
||||
kf.errorCovPre.at<float>(0) = 1; // px
|
||||
kf.errorCovPre.at<float>(7) = 1; // px
|
||||
kf.errorCovPre.at<float>(14) = 1;
|
||||
kf.errorCovPre.at<float>(21) = 1;
|
||||
kf.errorCovPre.at<float>(28) = 1; // px
|
||||
kf.errorCovPre.at<float>(35) = 1; // px
|
||||
|
||||
state.at<float>(0) = box.x;
|
||||
state.at<float>(1) = box.y;
|
||||
state.at<float>(2) = 0;
|
||||
state.at<float>(3) = 0;
|
||||
state.at<float>(4) = box.w;
|
||||
state.at<float>(5) = box.h;
|
||||
// <<<< Initialization
|
||||
|
||||
kf.statePost = state;
|
||||
}
|
||||
|
||||
// Kalman.correct() calculates: statePost = statePre + gain * (z(k)-measurementMatrix*statePre);
|
||||
// corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
void correct(bbox_t box) {
|
||||
meas.at<float>(0) = box.x;
|
||||
meas.at<float>(1) = box.y;
|
||||
meas.at<float>(2) = box.w;
|
||||
meas.at<float>(3) = box.h;
|
||||
|
||||
kf.correct(meas);
|
||||
|
||||
bbox_t new_box = predict();
|
||||
if (new_box.w == 0 || new_box.h == 0) {
|
||||
set(box);
|
||||
//std::cerr << " force set(): track_id = " << box.track_id <<
|
||||
// ", x = " << box.x << ", y = " << box.y << ", w = " << box.w << ", h = " << box.h << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Kalman.predict() calculates: statePre = TransitionMatrix * statePost;
|
||||
// predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
bbox_t predict() {
|
||||
bbox_t box;
|
||||
state = kf.predict();
|
||||
|
||||
box.x = state.at<float>(0);
|
||||
box.y = state.at<float>(1);
|
||||
box.w = state.at<float>(4);
|
||||
box.h = state.at<float>(5);
|
||||
return box;
|
||||
}
|
||||
|
||||
void initialize_kalman()
|
||||
{
|
||||
kf = cv::KalmanFilter(stateSize, measSize, contrSize, CV_32F);
|
||||
|
||||
// Transition State Matrix A
|
||||
// Note: set dT at each processing step!
|
||||
// [ 1 0 dT 0 0 0 ]
|
||||
// [ 0 1 0 dT 0 0 ]
|
||||
// [ 0 0 1 0 0 0 ]
|
||||
// [ 0 0 0 1 0 0 ]
|
||||
// [ 0 0 0 0 1 0 ]
|
||||
// [ 0 0 0 0 0 1 ]
|
||||
cv::setIdentity(kf.transitionMatrix);
|
||||
|
||||
// Measure Matrix H
|
||||
// [ 1 0 0 0 0 0 ]
|
||||
// [ 0 1 0 0 0 0 ]
|
||||
// [ 0 0 0 0 1 0 ]
|
||||
// [ 0 0 0 0 0 1 ]
|
||||
kf.measurementMatrix = cv::Mat::zeros(measSize, stateSize, CV_32F);
|
||||
kf.measurementMatrix.at<float>(0) = 1.0f;
|
||||
kf.measurementMatrix.at<float>(7) = 1.0f;
|
||||
kf.measurementMatrix.at<float>(16) = 1.0f;
|
||||
kf.measurementMatrix.at<float>(23) = 1.0f;
|
||||
|
||||
// Process Noise Covariance Matrix Q - result smoother with lower values (1e-2)
|
||||
// [ Ex 0 0 0 0 0 ]
|
||||
// [ 0 Ey 0 0 0 0 ]
|
||||
// [ 0 0 Ev_x 0 0 0 ]
|
||||
// [ 0 0 0 Ev_y 0 0 ]
|
||||
// [ 0 0 0 0 Ew 0 ]
|
||||
// [ 0 0 0 0 0 Eh ]
|
||||
//cv::setIdentity(kf.processNoiseCov, cv::Scalar(1e-3));
|
||||
kf.processNoiseCov.at<float>(0) = 1e-2;
|
||||
kf.processNoiseCov.at<float>(7) = 1e-2;
|
||||
kf.processNoiseCov.at<float>(14) = 1e-2;// 5.0f;
|
||||
kf.processNoiseCov.at<float>(21) = 1e-2;// 5.0f;
|
||||
kf.processNoiseCov.at<float>(28) = 1e-2;
|
||||
kf.processNoiseCov.at<float>(35) = 1e-2;
|
||||
|
||||
// Measures Noise Covariance Matrix R - result smoother with higher values (1e-1)
|
||||
cv::setIdentity(kf.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
|
||||
//cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1e-2));
|
||||
// <<<< Kalman Filter
|
||||
|
||||
set_delta_time(0);
|
||||
}
|
||||
|
||||
|
||||
one_kalman_t(int _stateSize = 6, int _measSize = 4, int _contrSize = 0) :
|
||||
kf(_stateSize, _measSize, _contrSize, CV_32F), measSize(_measSize), stateSize(_stateSize), contrSize(_contrSize)
|
||||
{
|
||||
state = cv::Mat(stateSize, 1, CV_32F); // [x,y,v_x,v_y,w,h]
|
||||
meas = cv::Mat(measSize, 1, CV_32F); // [z_x,z_y,z_w,z_h]
|
||||
//cv::Mat procNoise(stateSize, 1, type)
|
||||
// [E_x,E_y,E_v_x,E_v_y,E_w,E_h]
|
||||
|
||||
initialize_kalman();
|
||||
}
|
||||
};
|
||||
// ------------------------------------------
|
||||
|
||||
|
||||
|
||||
track_kalman_t(int _max_objects = 1000, int _min_frames = 3, float _max_dist = 40, cv::Size _img_size = cv::Size(10000, 10000)) :
|
||||
max_objects(_max_objects), min_frames(_min_frames), max_dist(_max_dist), img_size(_img_size),
|
||||
track_id_counter(0)
|
||||
{
|
||||
kalman_vec.resize(max_objects);
|
||||
track_id_state_id_time.resize(max_objects);
|
||||
result_vec_pred.resize(max_objects);
|
||||
}
|
||||
|
||||
float calc_dt() {
|
||||
dT = std::chrono::duration<double>(std::chrono::steady_clock::now() - global_last_time).count();
|
||||
return dT;
|
||||
}
|
||||
|
||||
static float get_distance(float src_x, float src_y, float dst_x, float dst_y) {
|
||||
return sqrtf((src_x - dst_x)*(src_x - dst_x) + (src_y - dst_y)*(src_y - dst_y));
|
||||
}
|
||||
|
||||
void clear_old_states() {
|
||||
// clear old bboxes
|
||||
for (size_t state_id = 0; state_id < track_id_state_id_time.size(); ++state_id)
|
||||
{
|
||||
float time_sec = std::chrono::duration<double>(std::chrono::steady_clock::now() - track_id_state_id_time[state_id].last_time).count();
|
||||
float time_wait = 0.5; // 0.5 second
|
||||
if (track_id_state_id_time[state_id].track_id > -1)
|
||||
{
|
||||
if ((result_vec_pred[state_id].x > img_size.width) ||
|
||||
(result_vec_pred[state_id].y > img_size.height))
|
||||
{
|
||||
track_id_state_id_time[state_id].track_id = -1;
|
||||
}
|
||||
|
||||
if (time_sec >= time_wait || track_id_state_id_time[state_id].detection_count < 0) {
|
||||
//std::cerr << " remove track_id = " << track_id_state_id_time[state_id].track_id << ", state_id = " << state_id << std::endl;
|
||||
track_id_state_id_time[state_id].track_id = -1; // remove bbox
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tst_t get_state_id(bbox_t find_box, std::vector<bool> &busy_vec)
|
||||
{
|
||||
tst_t tst;
|
||||
tst.state_id = -1;
|
||||
|
||||
float min_dist = std::numeric_limits<float>::max();
|
||||
|
||||
for (size_t i = 0; i < max_objects; ++i)
|
||||
{
|
||||
if (track_id_state_id_time[i].track_id > -1 && result_vec_pred[i].obj_id == find_box.obj_id && busy_vec[i] == false)
|
||||
{
|
||||
bbox_t pred_box = result_vec_pred[i];
|
||||
|
||||
float dist = get_distance(pred_box.x, pred_box.y, find_box.x, find_box.y);
|
||||
|
||||
float movement_dist = std::max(max_dist, static_cast<float>(std::max(pred_box.w, pred_box.h)) );
|
||||
|
||||
if ((dist < movement_dist) && (dist < min_dist)) {
|
||||
min_dist = dist;
|
||||
tst.state_id = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tst.state_id > -1) {
|
||||
track_id_state_id_time[tst.state_id].last_time = std::chrono::steady_clock::now();
|
||||
track_id_state_id_time[tst.state_id].detection_count = std::max(track_id_state_id_time[tst.state_id].detection_count + 2, 10);
|
||||
tst = track_id_state_id_time[tst.state_id];
|
||||
busy_vec[tst.state_id] = true;
|
||||
}
|
||||
else {
|
||||
//std::cerr << " Didn't find: obj_id = " << find_box.obj_id << ", x = " << find_box.x << ", y = " << find_box.y <<
|
||||
// ", track_id_counter = " << track_id_counter << std::endl;
|
||||
}
|
||||
|
||||
return tst;
|
||||
}
|
||||
|
||||
tst_t new_state_id(std::vector<bool> &busy_vec)
|
||||
{
|
||||
tst_t tst;
|
||||
// find empty cell to add new track_id
|
||||
auto it = std::find_if(track_id_state_id_time.begin(), track_id_state_id_time.end(), [&](tst_t &v) { return v.track_id == -1; });
|
||||
if (it != track_id_state_id_time.end()) {
|
||||
it->state_id = it - track_id_state_id_time.begin();
|
||||
//it->track_id = track_id_counter++;
|
||||
it->track_id = 0;
|
||||
it->last_time = std::chrono::steady_clock::now();
|
||||
it->detection_count = 1;
|
||||
tst = *it;
|
||||
busy_vec[it->state_id] = true;
|
||||
}
|
||||
|
||||
return tst;
|
||||
}
|
||||
|
||||
std::vector<tst_t> find_state_ids(std::vector<bbox_t> result_vec)
|
||||
{
|
||||
std::vector<tst_t> tst_vec(result_vec.size());
|
||||
|
||||
std::vector<bool> busy_vec(max_objects, false);
|
||||
|
||||
for (size_t i = 0; i < result_vec.size(); ++i)
|
||||
{
|
||||
tst_t tst = get_state_id(result_vec[i], busy_vec);
|
||||
int state_id = tst.state_id;
|
||||
int track_id = tst.track_id;
|
||||
|
||||
// if new state_id
|
||||
if (state_id < 0) {
|
||||
tst = new_state_id(busy_vec);
|
||||
state_id = tst.state_id;
|
||||
track_id = tst.track_id;
|
||||
if (state_id > -1) {
|
||||
kalman_vec[state_id].set(result_vec[i]);
|
||||
//std::cerr << " post: ";
|
||||
}
|
||||
}
|
||||
|
||||
//std::cerr << " track_id = " << track_id << ", state_id = " << state_id <<
|
||||
// ", x = " << result_vec[i].x << ", det_count = " << tst.detection_count << std::endl;
|
||||
|
||||
if (state_id > -1) {
|
||||
tst_vec[i] = tst;
|
||||
result_vec_pred[state_id] = result_vec[i];
|
||||
result_vec_pred[state_id].track_id = track_id;
|
||||
}
|
||||
}
|
||||
|
||||
return tst_vec;
|
||||
}
|
||||
|
||||
std::vector<bbox_t> predict()
|
||||
{
|
||||
clear_old_states();
|
||||
std::vector<bbox_t> result_vec;
|
||||
|
||||
for (size_t i = 0; i < max_objects; ++i)
|
||||
{
|
||||
tst_t tst = track_id_state_id_time[i];
|
||||
if (tst.track_id > -1) {
|
||||
bbox_t box = kalman_vec[i].predict();
|
||||
|
||||
result_vec_pred[i].x = box.x;
|
||||
result_vec_pred[i].y = box.y;
|
||||
result_vec_pred[i].w = box.w;
|
||||
result_vec_pred[i].h = box.h;
|
||||
|
||||
if (tst.detection_count >= min_frames)
|
||||
{
|
||||
if (track_id_state_id_time[i].track_id == 0) {
|
||||
track_id_state_id_time[i].track_id = ++track_id_counter;
|
||||
result_vec_pred[i].track_id = track_id_counter;
|
||||
}
|
||||
|
||||
result_vec.push_back(result_vec_pred[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
//std::cerr << " result_vec.size() = " << result_vec.size() << std::endl;
|
||||
|
||||
//global_last_time = std::chrono::steady_clock::now();
|
||||
|
||||
return result_vec;
|
||||
}
|
||||
|
||||
|
||||
std::vector<bbox_t> correct(std::vector<bbox_t> result_vec)
|
||||
{
|
||||
calc_dt();
|
||||
clear_old_states();
|
||||
|
||||
for (size_t i = 0; i < max_objects; ++i)
|
||||
track_id_state_id_time[i].detection_count--;
|
||||
|
||||
std::vector<tst_t> tst_vec = find_state_ids(result_vec);
|
||||
|
||||
for (size_t i = 0; i < tst_vec.size(); ++i) {
|
||||
tst_t tst = tst_vec[i];
|
||||
int state_id = tst.state_id;
|
||||
if (state_id > -1)
|
||||
{
|
||||
kalman_vec[state_id].set_delta_time(dT);
|
||||
kalman_vec[state_id].correct(result_vec_pred[state_id]);
|
||||
}
|
||||
}
|
||||
|
||||
result_vec = predict();
|
||||
|
||||
global_last_time = std::chrono::steady_clock::now();
|
||||
|
||||
return result_vec;
|
||||
}
|
||||
|
||||
};
|
||||
// ----------------------------------------------
|
||||
#endif // OPENCV
|
||||
|
||||
//extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
/*
|
||||
// C - wrappers
|
||||
LIB_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id);
|
||||
LIB_API void delete_detector();
|
||||
LIB_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size);
|
||||
LIB_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size);
|
||||
LIB_API bbox_t* detect(image_t img, int *result_size);
|
||||
LIB_API image_t load_img(char *image_filename);
|
||||
LIB_API void free_img(image_t m);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
||||
static std::shared_ptr<void> c_detector_ptr;
|
||||
static std::vector<bbox_t> c_result_vec;
|
||||
|
||||
void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) {
|
||||
c_detector_ptr = std::make_shared<LIB_API Detector>(cfg_filename, weight_filename, gpu_id);
|
||||
}
|
||||
|
||||
void delete_detector() { c_detector_ptr.reset(); }
|
||||
|
||||
bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) {
|
||||
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean);
|
||||
*result_size = c_result_vec.size();
|
||||
return c_result_vec.data();
|
||||
}
|
||||
|
||||
bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) {
|
||||
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean);
|
||||
*result_size = c_result_vec.size();
|
||||
return c_result_vec.data();
|
||||
}
|
||||
|
||||
bbox_t* detect(image_t img, int *result_size) {
|
||||
return detect_custom(img, 0.24, true, result_size);
|
||||
}
|
||||
|
||||
image_t load_img(char *image_filename) {
|
||||
return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename);
|
||||
}
|
||||
void free_img(image_t m) {
|
||||
static_cast<Detector*>(c_detector_ptr.get())->free_image(m);
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
*/
|
||||
#endif
|
||||
#endif // YOLO_V2_CLASS_HPP
|
||||
|
Reference in New Issue
Block a user